scholarly journals Path perturbation detection tasks reduce MSTd neuronal self-movement heading responses

2018 ◽  
Vol 119 (1) ◽  
pp. 124-133
Author(s):  
William K. Page ◽  
Charles J. Duffy

We presented optic flow and real movement heading stimuli while recording MSTd neuronal activity. Monkeys were alternately engaged in three tasks: visual detection of optic flow heading perturbations, vestibular detection of real movement heading perturbations, and auditory detection of brief tones. Push-button RTs were fastest for tones and slower for visual and vestibular heading perturbations, suggesting that the tone detection task was easier. Neuronal heading selectivity was strongest during the tone detection task, and weaker during the visual and vestibular heading perturbation detection tasks. Heading selectivity was weaker during visual and vestibular path perturbation detection, despite our presented heading cues only in the visual and vestibular modalities. We conclude that focusing on the self-movement transients of path perturbation distracted the monkeys from their heading and reduced neuronal responsiveness to heading direction. NEW & NOTEWORTHY Heading analysis is critical for steering and navigation. We recorded the activity of monkey cortical heading neurons during naturalistic self-movement. When the monkeys were required to respond to transient changes in their path, neuronal responses to heading direction were diminished. This suggests that the need to respond to momentary path perturbations reduces your ability to process your heading direction.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chloé Stengel ◽  
Marine Vernet ◽  
Julià L. Amengual ◽  
Antoni Valero-Cabré

AbstractCorrelational evidence in non-human primates has reported increases of fronto-parietal high-beta (22–30 Hz) synchrony during the top-down allocation of visuo-spatial attention. But may inter-regional synchronization at this specific frequency band provide a causal mechanism by which top-down attentional processes facilitate conscious visual perception? To address this question, we analyzed electroencephalographic (EEG) signals from a group of healthy participants who performed a conscious visual detection task while we delivered brief (4 pulses) rhythmic (30 Hz) or random bursts of Transcranial Magnetic Stimulation (TMS) to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. We report increases of inter-regional synchronization in the high-beta band (25–35 Hz) between the electrode closest to the stimulated region (the right FEF) and right parietal EEG leads, and increases of local inter-trial coherence within the same frequency band over bilateral parietal EEG contacts, both driven by rhythmic but not random TMS patterns. Such increases were accompained by improvements of conscious visual sensitivity for left visual targets in the rhythmic but not the random TMS condition. These outcomes suggest that high-beta inter-regional synchrony can be modulated non-invasively and that high-beta oscillatory activity across the right dorsal fronto-parietal network may contribute to the facilitation of conscious visual perception. Our work supports future applications of non-invasive brain stimulation to restore impaired visually-guided behaviors by operating on top-down attentional modulatory mechanisms.


2010 ◽  
Vol 103 (4) ◽  
pp. 1865-1873 ◽  
Author(s):  
Tao Zhang ◽  
Kenneth H. Britten

The ventral intraparietal area (VIP) of the macaque monkey is thought to be involved in judging heading direction based on optic flow. We recorded neuronal discharges in VIP while monkeys were performing a two-alternative, forced-choice heading discrimination task to relate quantitatively the activity of VIP neurons to monkeys' perceptual choices. Most VIP neurons were responsive to simulated heading stimuli and were tuned such that their responses changed across a range of forward trajectories. Using receiver operating characteristic (ROC) analysis, we found that most VIP neurons were less sensitive to small heading changes than was the monkey, although a minority of neurons were equally sensitive. Pursuit eye movements modestly yet significantly increased both neuronal and behavioral thresholds by approximately the same amount. Our results support the view that VIP activity is involved in self-motion judgments.


2018 ◽  
Vol 115 (41) ◽  
pp. 10499-10504 ◽  
Author(s):  
Yin Yan ◽  
Li Zhaoping ◽  
Wu Li

Early sensory cortex is better known for representing sensory inputs but less for the effect of its responses on behavior. Here we explore the behavioral correlates of neuronal responses in primary visual cortex (V1) in a task to detect a uniquely oriented bar—the orientation singleton—in a background of uniformly oriented bars. This singleton is salient or inconspicuous when the orientation contrast between the singleton and background bars is sufficiently large or small, respectively. Using implanted microelectrodes, we measured V1 activities while monkeys were trained to quickly saccade to the singleton. A neuron’s responses to the singleton within its receptive field had an early and a late component, both increased with the orientation contrast. The early component started from the outset of neuronal responses; it remained unchanged before and after training on the singleton detection. The late component started ∼40 ms after the early one; it emerged and evolved with practicing the detection task. Training increased the behavioral accuracy and speed of singleton detection and increased the amount of information in the late response component about a singleton’s presence or absence. Furthermore, for a given singleton, faster detection performance was associated with higher V1 responses; training increased this behavioral–neural correlate in the early V1 responses but decreased it in the late V1 responses. Therefore, V1’s early responses are directly linked with behavior and represent the bottom-up saliency signals. Learning strengthens this link, likely serving as the basis for making the detection task more reflexive and less top-down driven.


2019 ◽  
Author(s):  
Jackson J. Cone ◽  
Morgan L. Bade ◽  
Nicolas Y. Masse ◽  
Elizabeth A. Page ◽  
David J. Freedman ◽  
...  

AbstractWhenever the retinal image changes some neurons in visual cortex increase their rate of firing, while others decrease their rate of firing. Linking specific sets of neuronal responses with perception and behavior is essential for understanding mechanisms of neural circuit computation. We trained mice to perform visual detection tasks and used optogenetic perturbations to increase or decrease neuronal spiking primary visual cortex (V1). Perceptual reports were always enhanced by increments in V1 spike counts and impaired by decrements, even when increments and decrements were delivered to the same neuronal populations. Moreover, detecting changes in cortical activity depended on spike count integration rather than instantaneous changes in spiking. Recurrent neural networks trained in the task similarly relied on increments in neuronal activity when activity was costly. This work clarifies neuronal decoding strategies employed by cerebral cortex to translate cortical spiking into percepts that can be used to guide behavior.


1999 ◽  
Vol 81 (2) ◽  
pp. 596-610 ◽  
Author(s):  
William K. Page ◽  
Charles J. Duffy

MST neuronal responses to heading direction during pursuit eye movements. As you move through the environment, you see a radial pattern of visual motion with a focus of expansion (FOE) that indicates your heading direction. When self-movement is combined with smooth pursuit eye movements, the turning of the eye distorts the retinal image of the FOE but somehow you still can perceive heading. We studied neurons in the medial superior temporal area (MST) of monkey visual cortex, recording responses to FOE stimuli presented during fixation and smooth pursuit eye movements. Almost all neurons showed significant changes in their FOE selective responses during pursuit eye movements. However, the vector average of all the neuronal responses indicated the direction of the FOE during both fixation and pursuit. Furthermore, the amplitude of the net vector increased with increasing FOE eccentricity. We conclude that neuronal population encoding in MST might contribute to pursuit-tolerant heading perception.


Author(s):  
Michael L. Matthews ◽  
Robert G. Angus ◽  
Douglas G. Pearce

When a visual detection task is performed with distant targets in the absence of adequate accommodative cues, a performance loss is obtained which has been attributed to empty field myopia. It is shown that in a visual search situation an accommodative aid located at optical infinity improves detection by approximately 30% over empty field performance. It is further demonstrated that such an aid may overcome the conflicting accommodative cues provided by proximal contours defining the search area, i.e., a situation that is analogous to the detection of distant targets by observers searching through aircraft cabin windows.


2003 ◽  
Vol 90 (2) ◽  
pp. 549-558 ◽  
Author(s):  
S. Ben Hamed ◽  
W. Page ◽  
C. Duffy ◽  
A. Pouget

Basis functions have been extensively used in models of neural computation because they can be combined linearly to approximate any nonlinear functions of the encoded variables. We investigated whether dorsal medial superior temporal (MSTd) area neurons use basis functions to simultaneously encode heading direction, eye position, and the velocity of ocular pursuit. Using optimal linear estimators, we first show that the head-centered and eye-centered position of a focus of expansion (FOE) in optic flow, pursuit direction, and eye position can all be estimated from the single-trial responses of 144 MSTd neurons with an average accuracy of 2–3°, a value consistent with the discrimination thresholds measured in humans and monkeys. We then examined the format of the neural code for the head-centered position of the FOE, eye position, and pursuit direction. The basis function hypothesis predicts that a large majority of cells in MSTd should encode two or more signals simultaneously and combine these signals nonlinearly. Our analysis shows that 95% of the neurons encode two or more signals, whereas 76% code all three signals. Of the 95% of cells encoding two or more signals, 90% show nonlinear interactions between the encoded variables. These findings support the notion that MSTd may use basis functions to represent the FOE in optic flow, eye position, and pursuit.


2009 ◽  
Vol 109 (3) ◽  
pp. 899-910
Author(s):  
Chau-Chyun Liu ◽  
Ji-Liang Doong ◽  
Chih-Yung Lin ◽  
Ching-Huei Lai ◽  
Ming-Chang Jeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document