Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury

2013 ◽  
Vol 109 (11) ◽  
pp. 2666-2679 ◽  
Author(s):  
Kathleen J. Manella ◽  
Kathryn E. Roach ◽  
Edelle C. Field-Fote

Ankle clonus is common after spinal cord injury (SCI) and is attributed to loss of supraspinally mediated inhibition of soleus stretch reflexes and maladaptive reorganization of spinal reflex pathways. The maladaptive reorganization underlying ankle clonus is associated with other abnormalities, such as coactivation and reciprocal facilitation of tibialis anterior (TA) and soleus (SOL), which contribute to impaired walking ability in individuals with motor-incomplete SCI. Operant conditioning can increase muscle activation and decrease stretch reflexes in individuals with SCI. We compared two operant conditioning-based interventions in individuals with ankle clonus and impaired walking ability due to SCI. Training included either voluntary TA activation (TA↑) to enhance supraspinal drive or SOL H-reflex suppression (SOL↓) to modulate reflex pathways at the spinal cord level. We measured clonus duration, plantar flexor reflex threshold angle, timed toe tapping, dorsiflexion (DF) active range of motion, lower extremity motor scores (LEMS), walking foot clearance, speed and distance, SOL H-reflex amplitude modulation as an index of reciprocal inhibition, presynaptic inhibition, low-frequency depression, and SOL-to-TA clonus coactivation ratio. TA↑ decreased plantar flexor reflex threshold angle (−4.33°) and DF active range-of-motion angle (−4.32°) and increased LEMS of DF (+0.8 points), total LEMS of the training leg (+2.2 points), and nontraining leg (+0.8 points), and increased walking foot clearance (+ 4.8 mm) and distance (+12.09 m). SOL↓ decreased SOL-to-TA coactivation ratio (−0.21), increased nontraining leg LEMS (+1.8 points), walking speed (+0.02 m/s), and distance (+6.25 m). In sum, we found increased voluntary control associated with TA↑ outcomes and decreased reflex excitability associated with SOL↓ outcomes.

Author(s):  
Akbar Hojjati Najafabadi ◽  
Saeid Amini ◽  
Farzam Farahmand

The majority of the people with incomplete spinal cord injury lose their walking ability, due to the weakness of their muscle motors in providing torque. As a result, developing assistive devices to improve their conditionis of great importance. In this study, a combined application of the saddle-assistive device (S-AD) and mechanical medial linkage or thosis was evaluated to improve the walking ability in patients with spinal cord injury in the gait laboratory. This mobile assistive device is called the saddle-assistive device equipped with medial linkage or thosis (S-ADEM). In this device, a mechanical orthosis was used in a wheeled walker as previously done in the literature. Initially, for evaluation of the proposed assistive device, the experimental results related to the forces and torques exerted on the feet and upper limbs of a person with the incomplete Spinal Cord Injury (SCI) during walking usingthe standard walker were compared with an those obtained from using the S-ADEM on an able-bodied subject. It was found that using this combination of assistive devices decreases the vertical force and torque on the foot at the time of walking by 53% and 48%, respectively compared to a standard walker. Moreover, the hand-reaction force on the upper limb was negligible instanding and walking positions usingthe introduced device. The findings of this study revealed that the walking ability of the patients with incomplete SCI was improved using the proposed device, which is due to the bodyweight support and the motion technology used in it.


Spinal Cord ◽  
2021 ◽  
Author(s):  
Helge Kasch ◽  
Uffe Schou Løve ◽  
Anette Bach Jønsson ◽  
Kaare Eg Severinsen ◽  
Marc Possover ◽  
...  

Abstract Study design 1-year prospective RCT. Objective Examine the effect of implantable pulse generator and low-frequency stimulation of the pelvic nerves using laparoscopic implantation of neuroprosthesis (LION) compared with neuromuscular electrical stimulation (NMES) in SCI. Methods Inclusion criteria: traumatic spinal cord injury (SCI), age 18–55 years, neurological level-of-injury Th4–L1, time-since-injury >1 year, and AIS-grades A–B. Participants were randomized to (A) LION procedure or (B) control group receiving NMES. Primary outcome measure: Walking Index for Spinal Cord Injury (WISCI-II), which is a SCI specific outcome measure assessing ability to ambulate. Secondary outcome measures: Spinal Cord Independence Measure III (SCIM III), Patient Global Impression of Change (PGIC), Penn Spasm Frequency Scale (PSFS), severity of spasticity measured by Numeric Rating Scale (NRS-11); International Spinal Cord Injury data sets-Quality of Life Basic Data Set (QoLBDS), and Brief Pain Inventory (BPI). Results Seventeen SCI individuals, AIS grade A, neurological level ranging from Th4–L1, were randomized to the study. One individual was excluded prior to intervention. Eight participants (7 males) with a mean age (SD) of 35.5 (12.4) years were allocated to the LION procedure, 8 participants (7 males) with age of 38.8 (15.1) years were allocated to NMES. Significantly, 5 LION group participants gained 1 point on the WISCI II scale, (p < 0.013; Fisher´s exact test). WISCI II scale score did not change in controls. No significant changes were observed in the secondary outcome measures. Conclusion The LION procedure is a promising new treatment for individuals with SCI with significant one-year improvement in walking ability.


1957 ◽  
Vol 41 (2) ◽  
pp. 297-306 ◽  
Author(s):  
David P. C. Lloyd

Observations have been made upon a typical flexor reflex with the aim of disclosing the changes in amount, latency, and temporal configuration of reflex discharge that take place as afferent input is varied from zero to maximal for the band of cutaneous myelinated afferent fibers that extends upward from approximately 6 µ in diameter (group II fibers). Reflex threshold is reached at 6 to 12 per cent maximal afferent input. From threshold to maximal input the relation between input and amount of output is essentially linear, latency on the average decreases, the shorter central paths in general gain preference, but the known minimum pathway, one of three neurons, does not transmit unless aided by convergent activity. Flexor reflex discharge may occur in several bursts suggesting the existence of closed chain connections in the internuncial pools of the spinal cord. At any given input there is, in successively elicited reflexes, little correlation between latency and amount of discharge, at first sight a surprising result for each variable can be taken as a measure of excitability status of the motoneuron population. However, latency of discharge indicates excitability at the beginning of the reflex event whereas amount of discharge is an expression of excitability over the entire period of discharge. Given a constantly and rapidly fluctuating excitability absence of correlation between these variables would be an anticipated result.


2019 ◽  
Vol 19 (08) ◽  
pp. 1940060
Author(s):  
XINGANG BAI ◽  
XIANG GOU ◽  
WENCHUN WANG ◽  
CHAO DONG ◽  
FANGXU QUE ◽  
...  

The objective of this research was to evaluate the effectiveness and safety of Lower Extremity Exoskeleton Robot improving walking function and activity in patients with complete spinal cord injury. A prospective, open and self-controlled trial was conducted which include eight patients with complete spinal cord injury accepted Lower Extremity Exoskeleton Robot training with Aider 1.0 and Aider 1.1 for 2 weeks. The 6[Formula: see text]min Walk Test (6MWT), 10[Formula: see text]m Walk Test (10 MWT), Hoffer walking ability rating, Lower Extremity Motor Score (LEMS), Spinal Cord Independence Motor (SCIM), Walking Index for Spinal Cord Injury Version II (WISCI II) were recorded before, 1 week and 2 weeks after training. During the training, the incidence of adverse events (AE), the incidence of serious adverse events (SAE), the incidence of device defects and other safety indicators were observed. Compared with the pre-training, indicators (6MWT, 10MWT, Hoffer walking ability rating, WISCI II) were significantly different after 1 week of training and after 2 weeks of training. Four adverse events occurred during the training period and the incidence of adverse events was 50%. And there was no SAE or device defects. Therefore, it is safe and effective to use the lower extremity exoskeleton robot to complete the walking ability of patients with complete spinal cord injury.


2005 ◽  
Vol 85 (1) ◽  
pp. 52-66 ◽  
Author(s):  
T George Hornby ◽  
David H Zemon ◽  
Donielle Campbell

AbstractBackground and Purpose. Performance of therapist-assisted, body-weight–supported treadmill training (BWSTT) to enhance walking ability of people with neurological injury is an area of intense research. Its application in the clinical setting, however, is limited by the personnel and labor requirements placed on physical therapists. Recent development of motorized (“robotic”) rehabilitative devices that provide assistance during stepping may improve delivery of BWSTT. Case Description. This case report describes the use of a robotic device to enhance motor recovery and ambulation in 3 people following motor incomplete spinal cord injury. Interventions. Changes in motor impairment, functional limitations, and locomotor disability were monitored weekly during robotic-assisted BWSTT and following transition to therapist-assisted BWSTT with the assistance of one therapist. Outcomes. Following this training, 2 patients recovered independent over-ground walking and another improved his gait speed and endurance. Discussion. The use of robotic devices may assist physical therapists by providing task-specific practice of stepping in people following neurological injury.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Andrew C. Smith ◽  
Maria Knikou

Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI.


2013 ◽  
Vol 36 (6) ◽  
pp. 638-644 ◽  
Author(s):  
Sugalya Amatachaya ◽  
Pipatana Amatachaya ◽  
Mathita Keawsutthi ◽  
Wantana Siritaratiwat

Sign in / Sign up

Export Citation Format

Share Document