Intracortical Pathways Determine Breadth of Subthreshold Frequency Receptive Fields in Primary Auditory Cortex

2004 ◽  
Vol 91 (6) ◽  
pp. 2551-2567 ◽  
Author(s):  
Simranjit Kaur ◽  
Ronit Lazar ◽  
Raju Metherate

To examine the basis of frequency receptive fields in auditory cortex (ACx), we have recorded intracellular (whole cell) and extracellular (local field potential, LFP) responses to tones in anesthetized rats. Frequency receptive fields derived from excitatory postsynaptic potentials (EPSPs) and LFPs from the same location resembled each other in terms of characteristic frequency (CF) and breadth of tuning, suggesting that LFPs reflect local synaptic (including subthreshold) activity. Subthreshold EPSP and LFP receptive fields were remarkably broad, often spanning five octaves (the maximum tested) at moderate intensities (40–50 dB above threshold). To identify receptive-field features that are generated intracortically, we microinjected the GABAA receptor agonist muscimol (0.2–5.1 mM, 1–5 μl) into ACx. Muscimol dramatically reduced LFP amplitude and reduced receptive-field bandwidth, implicating intracortical contributions to these features but had lesser effects on CF response threshold or onset latency, suggesting minimal loss of thalamocortical input. Reversal of muscimol's inhibition preferentially at the recording site by diffusion from the recording pipette of the GABAA receptor antagonist picrotoxin (0.01–100 μM) disinhibited responses to CF stimuli more than responses to spectrally distant, non-CF stimuli. We propose that thalamocortical and intracortical pathways preferentially contribute to responses evoked by CF and non-CF stimuli, respectively, and that intracortical projections linking frequency representations determine the breadth of receptive fields in primary ACx. Broad, subthreshold receptive fields may distinguish ACx from subcortical auditory relay nuclei, promote integrated responses to spectrotemporally complex stimuli, and provide a substrate for plasticity of cortical receptive fields and maps.

2005 ◽  
Vol 94 (4) ◽  
pp. 2970-2975 ◽  
Author(s):  
Rajiv Narayan ◽  
Ayla Ergün ◽  
Kamal Sen

Although auditory cortex is thought to play an important role in processing complex natural sounds such as speech and animal vocalizations, the specific functional roles of cortical receptive fields (RFs) remain unclear. Here, we study the relationship between a behaviorally important function: the discrimination of natural sounds and the structure of cortical RFs. We examine this problem in the model system of songbirds, using a computational approach. First, we constructed model neurons based on the spectral temporal RF (STRF), a widely used description of auditory cortical RFs. We focused on delayed inhibitory STRFs, a class of STRFs experimentally observed in primary auditory cortex (ACx) and its analog in songbirds (field L), which consist of an excitatory subregion and a delayed inhibitory subregion cotuned to a characteristic frequency. We quantified the discrimination of birdsongs by model neurons, examining both the dynamics and temporal resolution of discrimination, using a recently proposed spike distance metric (SDM). We found that single model neurons with delayed inhibitory STRFs can discriminate accurately between songs. Discrimination improves dramatically when the temporal structure of the neural response at fine timescales is considered. When we compared discrimination by model neurons with and without the inhibitory subregion, we found that the presence of the inhibitory subregion can improve discrimination. Finally, we modeled a cortical microcircuit with delayed synaptic inhibition, a candidate mechanism underlying delayed inhibitory STRFs, and showed that blocking inhibition in this model circuit degrades discrimination.


2003 ◽  
Vol 90 (4) ◽  
pp. 2660-2675 ◽  
Author(s):  
Jennifer F. Linden ◽  
Robert C. Liu ◽  
Maneesh Sahani ◽  
Christoph E. Schreiner ◽  
Michael M. Merzenich

The mouse is a promising model system for auditory cortex research because of the powerful genetic tools available for manipulating its neural circuitry. Previous studies have identified two tonotopic auditory areas in the mouse—primary auditory cortex (AI) and anterior auditory field (AAF)— but auditory receptive fields in these areas have not yet been described. To establish a foundation for investigating auditory cortical circuitry and plasticity in the mouse, we characterized receptive-field structure in AI and AAF of anesthetized mice using spectrally complex and temporally dynamic stimuli as well as simple tonal stimuli. Spectrotemporal receptive fields (STRFs) were derived from extracellularly recorded responses to complex stimuli, and frequency-intensity tuning curves were constructed from responses to simple tonal stimuli. Both analyses revealed temporal differences between AI and AAF responses: peak latencies and receptive-field durations for STRFs and first-spike latencies for responses to tone bursts were significantly longer in AI than in AAF. Spectral properties of AI and AAF receptive fields were more similar, although STRF bandwidths were slightly broader in AI than in AAF. Finally, in both AI and AAF, a substantial minority of STRFs were spectrotemporally inseparable. The spectrotemporal interaction typically appeared in the form of clearly disjoint excitatory and inhibitory subfields or an obvious spectrotemporal slant in the STRF. These data provide the first detailed description of auditory receptive fields in the mouse and suggest that although neurons in areas AI and AAF share many response characteristics, area AAF may be specialized for faster temporal processing.


2007 ◽  
Vol 98 (4) ◽  
pp. 2337-2346 ◽  
Author(s):  
Jonathan B. Fritz ◽  
Mounya Elhilali ◽  
Shihab A. Shamma

Receptive fields in primary auditory cortex (A1) can be rapidly and adaptively reshaped to enhance responses to salient frequency cues when using single tones as targets. To explore receptive field changes to more complex spectral patterns, we trained ferrets to detect variable, multitone targets in the context of background, rippled noise. Recordings from A1 of behaving ferrets showed a consistent pattern of plasticity, at both the single-neuron level and the population level, with enhancement for each component tone frequency and suppression for intertone frequencies. Plasticity was strongest near neuronal best frequency, rapid in onset, and slow to fade. Although attention may trigger cortical plasticity, the receptive field changes persisted after the behavioral task was completed. The observed comb filter plasticity is an example of an adaptive contrast matched filter, which may generally improve discriminability between foreground and background sounds and, we conjecture, may predict A1 cortical plasticity for any complex spectral target.


2005 ◽  
Vol 94 (4) ◽  
pp. 2738-2747 ◽  
Author(s):  
Jeremy G. Turner ◽  
Larry F. Hughes ◽  
Donald M. Caspary

Advanced age is commonly associated with progressive cochlear pathology and central auditory deficits, collectively known as presbycusis. The present study examined central correlates of presbycusis by measuring response properties of primary auditory cortex (AI) layer V neurons in the Fischer Brown Norway rat model. Layer V neurons represent the major output of AI to other cortical and subcortical regions (primarily the inferior colliculus). In vivo single-unit extracellular recordings were obtained from 114 neurons in aged animals (29–33 mo) and compared with 105 layer V neurons in young-adult rats (4–6 mo). Three consecutive repetitions of a pure-tone receptive field map were run for each neuron. Age was associated with fewer neurons exhibiting classic V/U-shaped receptive fields and a greater percentage of neurons with more Complex receptive fields. Receptive fields from neurons in aged rats were also less reliable on successive repetitions of the same stimulus set. Aging was also associated with less firing during the stimulus in V/U-shaped receptive field neurons and more firing during the stimulus in Complex neurons, which were generally associated with inhibited firing in young controls. Finally, neurons in aged rats with Complex receptive fields were more easily driven by current pulses delivered to the soma. Collectively, these findings provide support for the notion that age is associated with diminished signal-to-noise coding by AI layer V neurons and are consistent with other research suggesting that GABAergic neurotransmission in AI may be compromised by aging.


2013 ◽  
Vol 109 (1) ◽  
pp. 261-272 ◽  
Author(s):  
Alain de Cheveigné ◽  
Jean-Marc Edeline ◽  
Quentin Gaucher ◽  
Boris Gourévitch

Local field potentials (LFPs) recorded in the auditory cortex of mammals are known to reveal weakly selective and often multimodal spectrotemporal receptive fields in contrast to spiking activity. This may in part reflect the wider “listening sphere” of LFPs relative to spikes due to the greater current spread at low than high frequencies. We recorded LFPs and spikes from auditory cortex of guinea pigs using 16-channel electrode arrays. LFPs were processed by a component analysis technique that produces optimally tuned linear combinations of electrode signals. Linear combinations of LFPs were found to have sharply tuned responses, closer to spike-related tuning. The existence of a sharply tuned component implies that a cortical neuron (or group of neurons) capable of forming a linear combination of its inputs has access to that information. Linear combinations of signals from electrode arrays reveal information latent in the subspace spanned by multichannel LFP recordings and are justified by the fact that the observations themselves are linear combinations of neural sources.


2008 ◽  
Vol 100 (3) ◽  
pp. 1622-1634 ◽  
Author(s):  
Ling Qin ◽  
JingYu Wang ◽  
Yu Sato

Previous studies in anesthetized animals reported that the primary auditory cortex (A1) showed homogenous phasic responses to FM tones, namely a transient response to a particular instantaneous frequency when FM sweeps traversed a neuron's tone-evoked receptive field (TRF). Here, in awake cats, we report that A1 cells exhibit heterogeneous FM responses, consisting of three patterns. The first is continuous firing when a slow FM sweep traverses the receptive field of a cell with a sustained tonal response. The duration and amplitude of FM response decrease with increasing sweep speed. The second pattern is transient firing corresponding to the cell's phasic tonal response. This response could be evoked only by a fast FM sweep through the cell's TRF, suggesting a preference for fast FM. The third pattern was associated with the off response to pure tones and was composed of several discrete response peaks during slow FM stimulus. These peaks were not predictable from the cell's tonal response but reliably reflected the time when FM swept across specific frequencies. Our A1 samples often exhibited a complex response pattern, combining two or three of the basic patterns above, resulting in a heterogeneous response population. The diversity of FM responses suggests that A1 use multiple mechanisms to fully represent the whole range of FM parameters, including frequency extent, sweep speed, and direction.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


2001 ◽  
Vol 85 (4) ◽  
pp. 1732-1749 ◽  
Author(s):  
Steven W. Cheung ◽  
Purvis H. Bedenbaugh ◽  
Srikantan S. Nagarajan ◽  
Christoph E. Schreiner

The spatial organization of response parameters in squirrel monkey primary auditory cortex (AI) accessible on the temporal gyrus was determined with the excitatory receptive field to pure tone stimuli. Dense, microelectrode mapping of the temporal gyrus in four animals revealed that characteristic frequency (CF) had a smooth, monotonic gradient that systematically changed from lower values (0.5 kHz) in the caudoventral quadrant to higher values (5–6 kHz) in the rostrodorsal quadrant. The extent of AI on the temporal gyrus was ∼4 mm in the rostrocaudal axis and 2–3 mm in the dorsoventral axis. The entire length of isofrequency contours below 6 kHz was accessible for study. Several independent, spatially organized functional response parameters were demonstrated for the squirrel monkey AI. Latency, the asymptotic minimum arrival time for spikes with increasing sound pressure levels at CF, was topographically organized as a monotonic gradient across AI nearly orthogonal to the CF gradient. Rostral AI had longer latencies (range = 4 ms). Threshold and bandwidth co-varied with the CF. Factoring out the contribution of the CF on threshold variance, residual threshold showed a monotonic gradient across AI that had higher values (range = 10 dB) caudally. The orientation of the threshold gradient was significantly different from the CF gradient. CF-corrected bandwidth, residual Q10, was spatially organized in local patches of coherent values whose loci were specific for each monkey. These data support the existence of multiple, overlying receptive field gradients within AI and form the basis to develop a conceptual framework to understand simple and complex sound coding in mammals.


2006 ◽  
Vol 96 (2) ◽  
pp. 746-764 ◽  
Author(s):  
Jos J. Eggermont

Spiking activity was recorded from cat auditory cortex using multi-electrode arrays. Cross-correlograms were calculated for spikes recorded on separate microelectrodes. The pair-wise cross-correlation matrix was constructed for the peak values of the correlograms. Hierarchical clustering was performed on the cross-correlation matrix for six stimulus conditions. These were silence, three multi-tone stimulus ensembles with different spectral densities, low-pass amplitude-modulated noise, and Poisson-distributed click trains that each lasted 15 min. The resulting neuron clusters reflect patches in cortex of up to several mm2 in size that expand and contract in response to different stimuli. Cluster positions and size were very similar for spontaneous activity and multi-tone stimulus-evoked activity but differed between those conditions and the noise and click stimuli. Cluster size was significantly larger in posterior auditory field (PAF) compared with primary auditory cortex (AI), whereas the fraction of common spikes (within a 10-ms window) across all electrode activity participating in a cluster was significantly higher in AI compared with PAF. Clusters crossed area boundaries in <5% of the cases were simultaneous recording were made in AI and PAF. Clusters are therefore similar to but not synonymous with the traditional view of neural assemblies. Common-spike spectrotemporal receptive fields (STRFs) were obtained for common-spike activity and all-spike activity within a cluster. Common-spike STRFs had higher signal-to-noise ratio than all-spike STRFs and showed generally spectral and temporal sharpening. The coincident and noncoincident output of the clusters could potentially act in parallel and may serve different modes of stimulus coding.


Sign in / Sign up

Export Citation Format

Share Document