Discharge Variability of Motor Units in an Intrinsic Muscle of Transplanted Hand

2008 ◽  
Vol 99 (5) ◽  
pp. 2232-2240 ◽  
Author(s):  
Dario Farina ◽  
Marco Pozzo ◽  
Marco Lanzetta ◽  
Roger M. Enoka

The study analyzed the discharge characteristics of the motor units in an intrinsic muscle of a transplanted hand. Multichannel electromyographic (EMG) recordings were obtained in 11 experimental sessions over 16 mo starting from day 205 after a hand was transplanted in a 35-yr-old man who had lost his right hand 22 yr earlier. The action potentials discharged by single motor units were identified from the surface EMG signals of the abductor digiti minimi muscle in the transplanted hand as the individual performed 60-s maximal and linearly increasing (ramp) contractions. Discharge rate decreased from 27.1 ± 8.4 pulses per second (pps) at the start of the maximal contractions to 17.2 ± 2.9 pps at the end ( P < 0.001) and increased from 17.4 ± 4.3 to 22.1 ± 5.0 pps during the ramp contractions ( P < 0.05). The SD of the interspike interval (ISI) nearly related to the mean ISI with a similar regression slope for the maximal (0.49 ± 0.09) and ramp contractions (0.43 ± 0.10). The coefficient of variation for ISI was higher than values in able-bodied persons and did not change during either the maximal (36.8 ± 10.8%) or the ramp contractions (35.9 ± 7.4%). High-frequency bursts of activity with <20 ms between two and six action potentials occurred during both maximal and ramp contractions. In conclusion, motor neurons that reinnervated a muscle in a transplanted hand discharged action potentials with a high degree of variability that suggested greater synaptic noise during the voluntary contractions.

2009 ◽  
Vol 101 (2) ◽  
pp. 624-632 ◽  
Author(s):  
Dario Farina ◽  
Deborah Falla

We analyzed individual motor units of the sternohyoid muscle with the aim of characterizing their minimum and maximum discharge rates and their variability in discharge during voluntary contractions. Surface EMG signals were recorded with an array of eight electrodes from the sternohyoid muscle of seven healthy men (age: 30.2 ± 3.5 yr). The multichannel surface EMG signals were displayed as feedback for the subjects who identified and modulated the activity of one target motor unit in 30-s contractions during which the discharge rate was increased from minimum to maximum (ramp contraction), sustained at maximum level (sustained), or increased in brief bursts (burst). During the ramp contractions, the minimum average discharge rate over epochs of 1 s was 11.6 ± 1.5 pulses per second (pps) and the maximum 57.0 ± 5.7 pps ( P < 0.001). During the sustained contractions, the motor unit discharge rate decreased from 65.5 ± 8.4 pps at the beginning to 52.9 ± 7.6 pps at the end of the contraction ( P < 0.05). The coefficient of variation for the interspike interval during the sustained contractions was 40.2 ± 9.8% and a large percentage of discharges had instantaneous rates >50 pps (52.2 ± 12.5%) and >100 pps (8.0 ± 1.2%), with peak values >150 pps. During the burst contractions, the instantaneous discharge rate reached average maximum values of 97.6 ± 36.8 pps. The observed discharge rates and their variability are higher than those reported for limb muscles, which may be due to large synaptic input and noise received by these motor neurons.


2008 ◽  
Vol 100 (3) ◽  
pp. 1223-1233 ◽  
Author(s):  
Dario Farina ◽  
Francesco Negro ◽  
Marco Gazzoni ◽  
Roger M. Enoka

This study investigated the relative proportion of motor-unit action potentials that are uniquely represented in the simulated and experimental surface electromyogram (EMG). Two hundred motor units were simulated in a cylindrical anatomical system. Action potentials for each motor unit were generated with a model and then compared with those of other motor units. Pairs of motor units were considered indistinguishable and the motor units not uniquely represented in the surface EMG, when the difference in the mean energy for the pair of potentials was <5%. The anatomical conditions and recording configurations had a substantial influence on the percentage of motor units that could be uniquely identified in the simulated EMG. For example, a single monopolar channel could discriminate only 3.4% of motor units in the simulated population, whereas a system with 81 Laplacian channels arranged in a grid could discriminate 83.8% of the motor units under the same conditions. The simulation results were confirmed with populations of motor units recorded experimentally from the abductor digiti minimi muscle of eight healthy men. Furthermore, the relative proportion of uniquely identified motor units in the simulated signal was only moderately related to motor-unit size and distance from the electrodes. These results indicate the upper limit for detection of individual motor units from the surface EMG and show that a few channels of surface EMG recordings are not sufficient to study single motor units. The noninvasive identification of motor units from the surface EMG requires the use of multiple channels of information.


2014 ◽  
Vol 112 (7) ◽  
pp. 1685-1691 ◽  
Author(s):  
Christopher J. Dakin ◽  
Brian H. Dalton ◽  
Billy L. Luu ◽  
Jean-Sébastien Blouin

Rectification of surface electromyographic (EMG) recordings prior to their correlation with other signals is a widely used form of preprocessing. Recently this practice has come into question, elevating the subject of EMG rectification to a topic of much debate. Proponents for rectifying suggest it accentuates the EMG spike timing information, whereas opponents indicate it is unnecessary and its nonlinear distortion of data is potentially destructive. Here we examine the necessity of rectification on the extraction of muscle responses, but for the first time using a known oscillatory input to the muscle in the form of electrical vestibular stimulation. Participants were exposed to sinusoidal vestibular stimuli while surface and intramuscular EMG were recorded from the left medial gastrocnemius. We compared the unrectified and rectified surface EMG to single motor units to determine which method best identified stimulus-EMG coherence and phase at the single-motor unit level. Surface EMG modulation at the stimulus frequency was obvious in the unrectified surface EMG. However, this modulation was not identified by the fast Fourier transform, and therefore stimulus coherence with the unrectified EMG signal failed to capture this covariance. Both the rectified surface EMG and single motor units displayed significant coherence over the entire stimulus bandwidth (1–20 Hz). Furthermore, the stimulus-phase relationship for the rectified EMG and motor units shared a moderate correlation ( r = 0.56). These data indicate that rectification of surface EMG is a necessary step to extract EMG envelope modulation due to motor unit entrainment to a known stimulus.


2015 ◽  
Vol 113 (10) ◽  
pp. 3499-3510 ◽  
Author(s):  
Leszek Kubin ◽  
Amy S. Jordan ◽  
Christian L. Nicholas ◽  
Jennifer M. Cori ◽  
John G. Semmler ◽  
...  

Muscle fibers of the genioglossus (GG) form the bulk of the muscle mass at the base of the tongue. The motor control of the tongue is critical for vocalization, feeding, and breathing. Our goal was to assess the patterns of motor innervation of GG single motor units (SMUs) in humans. Simultaneous monopolar recordings were obtained from four sites in the base of the tongue bilaterally at two antero-posterior levels from 16 resting, awake, healthy adult males, who wore a face mask with airway pressure and airflow sensors. We analyzed 69 data segments in which at least one lead contained large action potentials generated by an SMU. Such potentials served as triggers for spike-triggered averaging (STA) of signals recorded from the other three sites. Spontaneous activity of the SMUs was classified as inspiratory modulated, expiratory modulated, or tonic. Consistent with the antero-posterior orientation of GG fibers, 44 STAs (77%) recorded ipsilateral to the trigger yielded sharp action potentials with a median amplitude of 52 μV [interquartile range (IQR): 25–190] that were time shifted relative to the trigger by about 1 ms. Notably, 48% of recordings on the side opposite to the trigger also yielded sharp action potentials. Of those, 17 (29%) had a median amplitude of 63 μV (IQR: 39–96), and most were generated by tonic SMUs. Thus a considerable proportion of GG muscle fibers receive a crossed motor innervation. Crossed innervation may help ensure symmetry and stability of tongue position and movements under normal conditions and following injury or degenerative changes affecting the tongue.


2018 ◽  
Vol 129 (8) ◽  
pp. 1634-1641 ◽  
Author(s):  
Boudewijn T.H.M. Sleutjes ◽  
Judith Drenthen ◽  
Ernest Boskovic ◽  
Leonard J. van Schelven ◽  
Maria O. Kovalchuk ◽  
...  

1994 ◽  
Vol 76 (6) ◽  
pp. 2411-2419 ◽  
Author(s):  
S. J. Garland ◽  
R. M. Enoka ◽  
L. P. Serrano ◽  
G. A. Robinson

The activity of 50 single motor units was recorded in the biceps brachii muscle of human subjects while they performed submaximal isometric elbow flexion contractions that were sustained to induce fatigue. The purposes of this study were to examine the influence of fatigue on motor unit threshold force and to determine the relationship between the threshold force of recruitment and the initial interimpulse interval on the discharge rates of single motor units during a fatiguing contraction. The discharge rate of most motor units that were active from the beginning of the contraction declined during the fatiguing contraction, whereas the discharge rates of most newly recruited units were either constant or increased slightly. The absolute threshold forces of recruitment and derecruitment decreased, and the variability of interimpulse intervals increased after the fatigue task. The change in motor unit discharge rate during the fatigue task was related to the initial rate, but the direction of the change in discharge rate could not be predicted from the threshold force of recruitment or the variability in the interimpulse intervals. The discharge rate of most motor units declined despite an increase in the excitatory drive to the motoneuron pool during the fatigue task.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Éric Martineau ◽  
Adriana Di Polo ◽  
Christine Vande Velde ◽  
Richard Robitaille

Despite being an early event in ALS, it remains unclear whether the denervation of neuromuscular junctions (NMJ) is simply the first manifestation of a globally degenerating motor neuron. Using in vivo imaging of single axons and their NMJs over a three-month period, we identify that single motor-units are dismantled asynchronously in SOD1G37R mice. We reveal that weeks prior to complete axonal degeneration, the dismantling of axonal branches is accompanied by contemporaneous new axonal sprouting resulting in synapse formation onto nearby NMJs. Denervation events tend to propagate from the first lost NMJ, consistent with a contribution of neuromuscular factors extrinsic to motor neurons, with distal branches being more susceptible. These results show that NMJ denervation in ALS is a complex and dynamic process of continuous denervation and new innervation rather than a manifestation of sudden global motor neuron degeneration.


1977 ◽  
Vol 20 (4) ◽  
pp. 613-630 ◽  
Author(s):  
Harvey M. Sussman ◽  
Peter F. MacNeilage ◽  
Randall K. Powers

Recruitment and discharge patterns of single motor units (MUs) in the anterior belly of digastric were studied during speech in three subjects, using electrodes facilitating selective recording at high force levels. Fixed recruitment order was observed in over 99% of all comparisons. Later recruited units invariably possessed muscle action potentials of higher amplitude, suggesting that units were activated in accordance with the “size principle.” Additional evidence for this was that later recruited units, of a set of three studied during speech, motor unit training, and isometric force ramps, showed greater sensitivity to input, and greater dynamic range than earlier recruited units. Units in this set were much more sensitive to rapid changes in input associated with speech gestures than to static activation even at high force levels. Several significant relations between discharge characteristics and aspects of movement dynamics were observed, including relations between (1) recruitment interval (MU1 to MU3) and latency of mandibular lowering, (2) onset of initial discharge of MU1 and relative mechanical advantage of the mandible, (3) number of MUs active and velocity and displacement of the mandible, and (4) discharge rate of MU3 and velocity and displacement of the mandible.


2013 ◽  
Vol 109 (4) ◽  
pp. 1055-1064 ◽  
Author(s):  
Michael A. Pascoe ◽  
Jeffrey R. Gould ◽  
Roger M. Enoka

The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit ( n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P < 0.001). Once recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types.


Sign in / Sign up

Export Citation Format

Share Document