scholarly journals Dynamic neuromuscular remodeling precedes motor-unit loss in a mouse model of ALS

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Éric Martineau ◽  
Adriana Di Polo ◽  
Christine Vande Velde ◽  
Richard Robitaille

Despite being an early event in ALS, it remains unclear whether the denervation of neuromuscular junctions (NMJ) is simply the first manifestation of a globally degenerating motor neuron. Using in vivo imaging of single axons and their NMJs over a three-month period, we identify that single motor-units are dismantled asynchronously in SOD1G37R mice. We reveal that weeks prior to complete axonal degeneration, the dismantling of axonal branches is accompanied by contemporaneous new axonal sprouting resulting in synapse formation onto nearby NMJs. Denervation events tend to propagate from the first lost NMJ, consistent with a contribution of neuromuscular factors extrinsic to motor neurons, with distal branches being more susceptible. These results show that NMJ denervation in ALS is a complex and dynamic process of continuous denervation and new innervation rather than a manifestation of sudden global motor neuron degeneration.

2020 ◽  
Author(s):  
Katarina Stoklund Dittlau ◽  
Emily N. Krasnow ◽  
Laura Fumagalli ◽  
Tijs Vandoorne ◽  
Pieter Baatsen ◽  
...  

AbstractNeuromuscular junctions (NMJs) ensure proper communication between motor neurons and muscle through the release of neurotransmitters. In motor neuron disorders, such as amyotrophic lateral sclerosis (ALS), NMJs degenerate resulting in muscle atrophy, paralysis and respiratory failure. The aim of this study was to establish a versatile and reproducible in vitro model of a human motor unit to study the effect of ALS-causing mutations. Therefore, we generated a co-culture of human induced pluripotent stem cell-derived motor neurons and human primary mesoangioblast-derived myotubes in microfluidic devices. A chemotactic and volumetric gradient facilitated the growth of motor neuron neurites through microgrooves resulting in the interaction with myotubes and the formation of NMJs. We observed that ALS-causing FUS mutations resulted in a reduced neurite outgrowth and in a decreased NMJ number. Interestingly, the selective HDAC6 inhibitor, Tubastatin A, improved the neurite outgrowth and the NMJ morphology of FUS-ALS co-cultures, further prompting HDAC6 inhibition as a potential therapeutic strategy for ALS.


2020 ◽  
Author(s):  
Chaohua Cong ◽  
Weiwei Liang ◽  
Chunting Zhang ◽  
Ying Wang ◽  
Yueqing Yang ◽  
...  

Abstract Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. The exact mechanisms underlying motor neuron death in ALS are still not fully understood, but a growing body of evidence indicates that inflammatory could accentuate disease severity and accelerate disease progression. Currently, no neuroprotective strategies have effectively prevented the progression of this disease.Methods: IF, western blotting and RT-PCR were used to analyze the expression of PAK4 in vitro and in vivo models of ALS. We examined PAK4 function in ALS and the underlying mechanism by cell transfection, intraspinally injection of LV-PAK4 in hSOD1G93A mice, flow cytometry, TUNEL staining, IF and western blotting.Results: Here, we observed that the expression and activity of PAK4 significantly decreased in hSOD1G93A-related cell and mouse models of ALS. In hSOD1G93A mice,the expression of PAK4 began to decrease at early-symptom stages of the disease. PAK4 silencing increased degeneration of motor neurons (NSC34 cells) and suppressed the CREB pathway. Overexpression of PAK4 protected motor neurons from hSOD1G93A-induced degeneration by increasing the levels and transcriptional activity of CREB. The neuroprotective effect of PAK4 was markedly inhibited by compound 3i, a specific CREB inhibitor. In hSOD1G93A-linked cell and mice, the CREB pathway, as the downstream target of decreased PAK4, was inhibited, and cell apoptosis increased. We also found that the expression of PAK4 was negatively regulated by miR-9-5p, and the miR-9-5p levels were upregulated in ALS. In vivo experiments revealed that PAK4 overexpression in the spinal neurons of hSOD1G93A mice suppressed motor neuron degeneration, prolonged survival and promoted the CREB pathway. Conclusion: These results indicate that PAK4 plays a protective role for motor neurons by targeting CREB, suggesting it may be a useful therapeutic target in ALS.


2001 ◽  
Vol 49 (8) ◽  
pp. 957-972 ◽  
Author(s):  
Zhiping Liu ◽  
Lee J. Martin

We developed an isolation technique for motor neurons from adult rat spinal cord. Spinal cord enlargements were discretely microdissected into ventral horn tissue columns that were trypsin-digested and subjected to differential low-speed centrifugation to fractionate ventral horn cell types. A fraction enriched in α-motor neurons was isolated. Motor neuron enrichment was verified by immunofluorescence for choline acetyltransferase and prelabeling axon projections to skeletal muscle. Adult motor neurons were isolated from naïve rats and were exposed to oxidative agents or were isolated from rats with sciatic nerve lesions (avulsions). We tested the hypothesis, using single-cell gel electrophoresis (comet assay), that hydrogen peroxide, nitric oxide, and peroxynitrite exposure in vitro and axotomy in vivo induce DNA damage in adult motor neurons early during their degeneration. This study contributes three important developments in the study of motor neurons. It demonstrates that mature spinal motor neurons can be isolated and used for in vitro models of motor neuron degeneration. It shows that adult motor neurons can be isolated from in vivo models of motor neuron degeneration and evaluated on a single-cell basis. This study also demonstrates that the comet assay is a feasible method for measuring DNA damage in individual motor neurons. Using these methods, we conclude that motor neurons undergoing oxidative stress from reactive oxygen species and axotomy accumulate DNA damage early in their degeneration. (J Histochem Cytochem 49:957–972, 2001)


2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Nao Yamaoka ◽  
Yu Imaizumi ◽  
Takunori Nagashima ◽  
Taiki Furutani ◽  
...  

Engineered three-dimensional models of neuromuscular tissues are promising for use in mimicking their disorder states in vitro. Although several models have been developed, it is still challenging to mimic the physically separated structures of motor neurons (MNs) and skeletal muscle (SkM) fibers in the motor units in vivo. In this study, we aimed to develop microdevices for precisely compartmentalized coculturing of MNs and engineered SkM tissues. The developed microdevices, which fit a well of 24 well plates, had a chamber for MNs and chamber for SkM tissues. The two chambers were connected by microtunnels for axons, permissive to axons but not to cell bodies. The axons from human-induced-pluripotent-stem-cell-derived MN spheroids in the MN chamber elongated in microtunnels, reached the tissue-engineered human SkM in the SkM chamber, and formed functional neuromuscular junctions with the muscle fibers. The cocultured SkM tissues with MNs on the device contracted spontaneously in response to spontaneous firing of MNs. The addition of a neurotransmitter, glutamate, into the MN chamber induced contraction of the cocultured SkM tissues. Selective addition of tetrodotoxin or vecuronium bromide into either chamber induced SkM tissue relaxation, which could be explained by the inhibitory mechanisms. We also demonstrated the application of chemical or mechanical stimuli to the middle of the axons of cocultured tissues on the device. Thus, compartmentalized neuromuscular tissue models fabricated on the device could be used for phenotypic screening to evaluate the cellular type specific efficacy of drug candidates and would be a useful tool in fundamental research and drug development for neuromuscular disorders.


2019 ◽  
Vol 27 (4) ◽  
pp. 1369-1382 ◽  
Author(s):  
Honglin Tan ◽  
Mina Chen ◽  
Dejiang Pang ◽  
Xiaoqiang Xia ◽  
Chongyangzi Du ◽  
...  

Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Improving neuronal survival in ALS remains a significant challenge. Previously, we identified Lanthionine synthetase C-like protein 1 (LanCL1) as a neuronal antioxidant defense gene, the genetic deletion of which causes apoptotic neurodegeneration in the brain. Here, we report in vivo data using the transgenic SOD1G93A mouse model of ALS indicating that CNS-specific expression of LanCL1 transgene extends lifespan, delays disease onset, decelerates symptomatic progression, and improves motor performance of SOD1G93A mice. Conversely, CNS-specific deletion of LanCL1 leads to neurodegenerative phenotypes, including motor neuron loss, neuroinflammation, and oxidative damage. Analysis reveals that LanCL1 is a positive regulator of AKT activity, and LanCL1 overexpression restores the impaired AKT activity in ALS model mice. These findings indicate that LanCL1 regulates neuronal survival through an alternative mechanism, and suggest a new therapeutic target in ALS.


Author(s):  
Valentina Pegoraro ◽  
Antonio Merico ◽  
Corrado Angelini

Amyotrophic lateral sclerosis (ALS) is a rare, progressive, neurodegenerative disorder caused by degeneration of upper and lower motor neurons. The disease process leads from lower motor neuron involvement to progressive muscle atrophy, weakness, fasciculations for the upper motor neuron involvement to spasticity. Muscle atrophy in ALS is caused by a dysregulation in the molecular network controlling fast and slow muscle fibres. Denervation and reinnervation processes in skeletal muscle occur in the course of ALS and are modulated by rehabilitation. MicroRNAs (miRNAs) are small non-coding RNAs that modulate a wide range of biological functions under various pathophysiological conditions. MiRNAs can be secreted by various cell types and they are markedly stable in body fluids. MiR-1, miR-133 a, miR-133b, and miR-206 are called “myomiRs” and are considered markers of myogenesis during muscle regeneration and neuromuscular junction stabilization or sprouting. We observed a positive effect of a standard aerobic exercise rehabilitative protocol conducted for six weeks in 18 ALS patients during hospitalization in our center. We correlated clinical scales with molecular data on myomiRs. After six weeks of moderate aerobic exercise, myomiRNAs were down-regulated, suggesting an active proliferation of satellite cells in muscle and increased neuromuscular junctions. Our data suggest that circulating miRNAs modulate during skeletal muscle recovery in response to physical rehabilitation in ALS.


2019 ◽  
Vol 28 (19) ◽  
pp. 3199-3210 ◽  
Author(s):  
Kevin A Kaifer ◽  
Eric Villalón ◽  
Benjamin S O'Brien ◽  
Samantha L Sison ◽  
Caley E Smith ◽  
...  

Abstract Spinal muscular atrophy (SMA) is a neuromuscular disease caused by deletions or mutations in survival motor neuron 1 (SMN1). The molecular mechanisms underlying motor neuron degeneration in SMA remain elusive, as global cellular dysfunction obscures the identification and characterization of disease-relevant pathways and potential therapeutic targets. Recent reports have implicated microRNA (miRNA) dysregulation as a potential contributor to the pathological mechanism in SMA. To characterize miRNAs that are differentially regulated in SMA, we profiled miRNA levels in SMA induced pluripotent stem cell (iPSC)-derived motor neurons. From this array, miR-23a downregulation was identified selectively in SMA motor neurons, consistent with previous reports where miR-23a functioned in neuroprotective and muscle atrophy-antagonizing roles. Reintroduction of miR-23a expression in SMA patient iPSC-derived motor neurons protected against degeneration, suggesting a potential miR-23a-specific disease-modifying effect. To assess this activity in vivo, miR-23a was expressed using a self-complementary adeno-associated virus serotype 9 (scAAV9) viral vector in the Smn2B/− SMA mouse model. scAAV9-miR-23a significantly reduced the pathology in SMA mice, including increased motor neuron size, reduced neuromuscular junction pathology, increased muscle fiber area, and extended survival. These experiments demonstrate that miR-23a is a novel protective modifier of SMA, warranting further characterization of miRNA dysfunction in SMA.


2003 ◽  
Vol 89 (3) ◽  
pp. 1488-1502 ◽  
Author(s):  
Irina V. Orekhova ◽  
Vera Alexeeva ◽  
Paul J. Church ◽  
Klaudiusz R. Weiss ◽  
Vladimir Brezina

The functional activity of even simple cellular ensembles is often controlled by surprisingly complex networks of neuromodulators. One such network has been extensively studied in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle is innervated by two motor neurons, B15 and B16, which release modulatory peptide cotransmitters to shape ACh-mediated contractions of the muscle. Previous analysis has shown that key to the combinatorial ability of B15 and B16 to control multiple parameters of the contraction is an asymmetry in their peptide modulatory actions. B16, but not B15, releases myomodulin, which, among other actions, inhibits the contraction. Work in single ARC muscle fibers has identified a distinctive myomodulin-activated K current as a candidate postsynaptic mechanism of the inhibition. However, definitive evidence for this mechanism has been lacking. Here, working with the single fibers and then motor neuron-elicited excitatory junction potentials (EJPs) and contractions of the intact ARC muscle, we have confirmed two central predictions of the K-current hypothesis: the myomodulin inhibition of contraction is associated with a correspondingly large inhibition of the underlying depolarization, and the inhibition of both contraction and depolarization is blocked by 4-aminopyridine (4-AP), a potent and selective blocker of the myomodulin-activated K current. However, in the intact muscle, the experiments revealed a second, 4-AP-resistant component of myomodulin inhibition of both B15- and B16-elicited EJPs. This component resembles, and mutually occludes with, inhibition of the EJPs by another peptide modulator released from both B15 and B16, buccalin, which acts by a presynaptic mechanism, inhibition of ACh release from the motor neuron terminals. Direct measurements of peptide release showed that myomodulin also inhibits buccalin release from B15 terminals. At the level of contractions, nevertheless, the postsynaptic K-current mechanism is responsible for much of the myomodulin inhibition of peak contraction amplitude. The presynaptic mechanism, which is most evident during the initial build-up of the EJP waveform, underlies instead an increase of contraction latency.


2018 ◽  
Vol 89 (8) ◽  
pp. 808-812 ◽  
Author(s):  
Raquel Manzano ◽  
Gianni Sorarú ◽  
Christopher Grunseich ◽  
Pietro Fratta ◽  
Emanuela Zuccaro ◽  
...  

Kennedy’s disease, or spinal and bulbar muscular atrophy (SBMA), is an X-linked neuromuscular condition clinically characterised by weakness, atrophy and fasciculations of the limb and bulbar muscles, as a result of lower motor neuron degeneration. The disease is caused by an abnormally expanded triplet repeat expansions in the ubiquitously expressed androgen receptor gene, through mechanisms which are not entirely elucidated. Over the years studies from both humans and animal models have highlighted the involvement of cell populations other than motor neurons in SBMA, widening the disease phenotype. The most compelling aspect of these findings is their potential for therapeutic impact: muscle, for example, which is primarily affected in the disease, has been recently shown to represent a valid alternative target for therapy to motor neurons. In this review, we discuss the emerging study of the extra-motor neuron involvement in SBMA, which, besides increasingly pointing towards a multidisciplinary approach for affected patients, deepens our understanding of the pathogenic mechanisms and holds potential for providing new therapeutic targets for this disease.


Sign in / Sign up

Export Citation Format

Share Document