Incorporating Voluntary Knee Flexion Into Nonanticipatory Balance Corrections

2007 ◽  
Vol 98 (5) ◽  
pp. 3047-3059 ◽  
Author(s):  
Lars B. Oude Nijhuis ◽  
Bastiaan R. Bloem ◽  
Mark G. Carpenter ◽  
John H. J. Allum

Knee movements play a critical role in most balance corrections. Loss of knee flexibility may cause postural instability. Conversely, trained voluntary knee flexions executed during balance corrections might help to overcome balance deficits. We examined whether bilateral knee flexion could be added to automatic balance corrections generated by sudden balance perturbations. We investigated how this could be achieved and whether it improved or worsened balance control. Twenty-four healthy subjects participated in three different test conditions, in which they had to flex their knees following an auditory cue (VOLUNTARY condition), had to restore their balance in response to multidirectional rotations of a support surface (REACTIVE condition), or the combination of these two (COMBINED condition). A new variable set (PREDICTED), calculated as the mathematical sum of VOLUNTARY and REACTIVE, was compared with the COMBINED variable set. COMBINED responses following forward rotations were close to PREDICTED, or greater, suggesting adequate integration of knee flexion into the automatic balance reactions. For backward rotations, the COMBINED condition resulted in several near-falls, and this was generally associated with smaller knee flexion and smaller EMG responses. Subjects compensated by using greater trunk flexion and arm movements. Activity in several muscles displayed earlier onsets for the COMBINED condition following backward rotations. We conclude that healthy adults can incorporate voluntary knee flexion into their automatic balance corrections and that this depends on the direction of the postural perturbation. These findings highlight the flexibility of the human balance repertoire and underscore both the advantages and limitations of using trained voluntary movements to aid balance corrections in man.

2009 ◽  
Vol 101 (6) ◽  
pp. 2802-2814 ◽  
Author(s):  
Lars B. Oude Nijhuis ◽  
John H. J. Allum ◽  
George F. Borm ◽  
Flurin Honegger ◽  
Sebastiaan Overeem ◽  
...  

Support-surface movements are commonly used to examine balance control. Subjects typically receive a series of identical or randomly interspersed multidirectional balance perturbations and the atypical “first trial reaction” (evoked by the first perturbation) is often excluded from further analysis. However, this procedure may obscure vital information about neurophysiological mechanisms associated with the first perturbation and, by analogy, fully unexpected falls. We studied first trial reactions, aiming to clarify their directional impact on postural control and to characterize the underlying neurophysiological substrate. We instructed 36 subjects to maintain balance following support-surface rotations in six different directions. Perturbations in each direction were delivered in blocks, consisting of 10 serial stimuli. Full body kinematics, surface reactive forces, and electromyographic (EMG) responses were recorded. Regardless of direction, for the very first rotation, displacement of the center of mass was 15% larger compared with the ensuing nine identical rotations ( P < 0.0001). This first trial reaction immediately reemerged whenever a new perturbation direction was introduced. First trial reactions (and near-falls) were greatest for backward-directed rotations and smallest for laterally directed rotations. This directional dependence coincided with early changes in vertical head accelerations. First trial reactions in EMG responses involved larger amplitudes in general and earlier muscle response onsets in upper body muscles. These findings show that first trial reactions are associated with significantly increased postural instability, mainly due to increased response amplitudes. Although rapid habituation occurs following presentation of identical stimuli, subjects immediately become unstable again when the perturbation direction suddenly changes. Excessive responses due to a failure to combine proprioceptive and vestibular cues effectively may explain this instability seen with first trials, particularly when falling backward.


1999 ◽  
Vol 9 (4) ◽  
pp. 223-252
Author(s):  
John H.J. Allum ◽  
Neil T. Shepard

Dynamic posturography comprises a series of balance control tests which help physicians overcome numerous diagnostic and treatment challenges arising when examining patients complaining of a debilitating balance disorder. These challenges include the specific differential diagnosis, documentation of symptoms and assessment of functional disability. It must be determined whether the cause of the disability is an organic sensory deficit, a central nervous system (CNS) lesion or a non-organic (that is, possibly psychogenic or just overtly simulated) disorder. This review is targeted towards providing the reader (a) an overview of the effects sensori-motor deficits have on balance control, specifically vestibulo-spinal and proprioceptive reflex deficits; and, (b) how these effects may be assessed objectively in a clinical setting to differentiate between various organic and non-organic balance-disorders. The techniques used to study these effects are based on the analysis of both rapid balance-correcting and slow balance-stabilizing responses to fast and slow movements in the pitch plane of the support surface on which the test subject stands.


2006 ◽  
Vol 23 (3) ◽  
pp. 315-323 ◽  
Author(s):  
William H. Paloski ◽  
Scott J. Wood ◽  
Alan H. Feiveson ◽  
F. Owen Black ◽  
Emma Y. Hwang ◽  
...  

2004 ◽  
Vol 96 (6) ◽  
pp. 2301-2316 ◽  
Author(s):  
Richard C. Fitzpatrick ◽  
Brian L. Day

Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.


2020 ◽  
Vol 10 (24) ◽  
pp. 8886
Author(s):  
Carlo Ferraresi ◽  
Daniela Maffiodo ◽  
Walter Franco ◽  
Giovanni Gerardo Muscolo ◽  
Carlo De Benedictis ◽  
...  

Nowadays, increasing attention is being paid to techniques aimed at assessing a subject’s ability to maintain or regain control of balance, thus reducing the risk of falls. To this end, posturographic analyses are performed in different clinical settings, both in unperturbed and perturbed conditions. This article presents a new Hardware-In-the-Loop (HIL) equipment designed for the development of an automatic perturbator for postural control analysis, capable of providing controlled mechanical stimulation by means of an impulsive force exerted on a given point of the body. The experimental equipment presented here includes the perturbator and emulates its interaction with both the subject’s body and the operator performing the test. The development of the perturbator and of the entire HIL equipment is described, including component selection, modeling of the entire system, and experimentally verified simulations used to study and define the most appropriate control laws.


2020 ◽  
Vol 15 (9) ◽  
Author(s):  
Kyle W. Siegrist ◽  
Ryan M. Kramer ◽  
James R. Chagdes

Abstract Understanding the mechanisms behind human balance has been a subject of interest as various postural instabilities have been linked to neuromuscular diseases (e.g., Parkinson's, multiple sclerosis, and concussion). This paper presents a method to characterize an individual's postural stability and estimate of their neuromuscular feedback control parameters. The method uses a generated topological mapping between a subject's experimental data and a dataset consisting of time-series realizations generated using an inverted pendulum mathematical model of upright balance. The performance of the method is quantified using a set of validation time-series realizations with known stability and neuromuscular control parameters. The method was found to have an overall sensitivity of 85.1% and a specificity of 91.9%. Furthermore, the method was most accurate when identifying limit cycle oscillations (LCOs) with a sensitivity of 91.1% and a specificity of 97.6%. Such a method has the capability of classifying an individual's stability and revealing possible neuromuscular impairment related to balance control, ultimately providing useful information to clinicians for diagnostic and rehabilitation purposes.


Author(s):  
Kyle W. Siegrist ◽  
James R. Chagdes ◽  
Ryan M. Kramer

Abstract Understanding the mechanisms behind human balance has been a subject of interest as various postural instabilities have been linked to neuromuscular diseases (Parkinson’s, multiple sclerosis, and concussion). This paper presents a classification method for an individual’s postural stability and estimation of their neuromuscular feedback control parameters. The method uses a generated topological mapping between a subjects experimental data and a data set consisting of time series realizations generated using an inverted pendulum mathematical model of upright balance. The performance of the method is quantified using a time series realizations with known stability and neuromuscular control parameters. The method was found to have an overall sensitivity of 85.1% and a specificity of 91.9%. Furthermore, the method was most accurate when identifying limit cycle oscillations with a sensitivity of 91.1% and a specificity of 97.6%. Such a method has the capability of classifying an individual’s stability and revealing possible neuromuscular impairment related to balance control, ultimately providing useful information to clinicians for diagnostic and rehabilitation purposes.


2020 ◽  
Vol 36 (4) ◽  
pp. 228-234
Author(s):  
Ziva M. Rosker ◽  
Jernej Rosker ◽  
Nejc Sarabon

Reports on body sway control following microdiscectomy lack reports on side-specific balance deficits as well as the effects of trunk balance control deficits on body sway during upright stances. About 3 weeks post microdiscectomy, the body sway of 27 patients and 25 controls was measured while standing in an upright quiet stance with feet positioned parallel on an unstable support surface, a tandem stance with the involved leg positioned in front or at the back, a single-leg stance with both legs, and sitting on an unstable surface. Velocity, average amplitude, and frequency-direction–specific parameters were analyzed from the center of pressure movement, measured by the force plate. Statistically significant differences between the 2 groups were observed for the medial–lateral body sway frequency in parallel stance on a stable and unstable support surface and for the sitting balance task in medial-lateral body sway parameters. Medium to high correlations were observed between body sway during sitting and the parallel stance, as well as between the tandem and single-legged stances. Following microdiscectomy, deficits in postural balance were side specific, as expected by the nature of the pathology. In addition, the results of this study confirmed the connection between proximal balance control deficits and balance during upright quiet balance tasks.


2019 ◽  
Vol 126 (3) ◽  
pp. 446-461 ◽  
Author(s):  
Hiroshi Kunimura ◽  
Masakazu Matsuoka ◽  
Naoki Hamada ◽  
Koichi Hiraoka

The present study examined whether an internal or external attentional focus would affect participants’ feet-in-place balance response to postural stance perturbations. A movable platform automatically slid forward or backward while healthy participants stood on it and (a) performed no cognitive activity (control), (b) focused on the pelvis or upper body sway (internal focus), (c) memorized a number displayed immediately before the platform slid (external focus), or (d) kept the equilibrium of an unstable cylinder over the arm (external focus). The forward displacement of the pelvis induced by the platform sliding forward was smaller when participants focused on their pelvic sway, although such effect was absent when they focused on their upper body sway, indicating that the internal focus was effective for the postural response when attention was paid to the pelvic sway. Regarding an external attention focus, the forward displacement of the pelvis induced by the platform sliding forward was smaller when participants focused on the equilibrium of an unstable object over the arm, but this effect was absent when they focused on the number, indicating that an external focus was only effective when the unstable object focused upon was relevant to the equilibrium of one’s own body. No attentional intervention was effective during backward sliding of the support surface, indicating that central set for responding to postural perturbation depends on the direction of the postural perturbation.


Sign in / Sign up

Export Citation Format

Share Document