Norepinephrine Differentially Modulates Different Types of Respiratory Pacemaker and Nonpacemaker Neurons

2006 ◽  
Vol 95 (4) ◽  
pp. 2070-2082 ◽  
Author(s):  
Jean-Charles Viemari ◽  
Jan-Marino Ramirez

Pacemakers are found throughout the mammalian CNS. Yet, it remains largely unknown how these neurons contribute to network activity. Here we show that for the respiratory network isolated in transverse slices of mice, different functions can be assigned to different types of pacemakers and nonpacemakers. This difference becomes evident in response to norepinephrine (NE). Although NE depolarized 88% of synaptically isolated inspiratory neurons, this neuromodulator had differential effects on different neuron types. NE increased in cadmium-insensitive pacemakers burst frequency, not burst area and duration, and it increased in cadmium-sensitive pacemakers burst duration and area, but not frequency. NE also differentially modulated nonpacemakers. Two types of nonpacemakers were identified: “silent nonpacemakers” stop spiking, whereas “active nonpacemakers” spontaneously spike when isolated from the network. NE selectively induced cadmium-sensitive pacemaker properties in active, but not silent, nonpacemakers. Flufenamic acid (FFA), a blocker of ICAN, blocked the induction as well as modulation of cadmium-sensitive pacemaker activity, and blocked at the network level the NE-induced increase in burst area and duration of inspiratory network activity; the frequency modulation (FM) was unaffected. We therefore propose that modulation of cadmium-sensitive pacemaker activity contributes at the network level to changes in burst shape, not frequency. Riluzole blocked the FM of isolated cadmium-insensitive pacemakers. In the presence of riluzole, NE caused disorganized network activity, suggesting that cadmium-insensitive pacemakers are critical for rhythm generation. We conclude that different types of nonpacemaker and pacemaker neurons differentially control different aspects of the respiratory rhythm.

2001 ◽  
Vol 86 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Muriel Thoby-Brisson ◽  
Jan-Marino Ramirez

In the respiratory network of mice, we characterized with the whole cell patch-clamp technique pacemaker properties in neurons discharging in phase with inspiration. The respiratory network was isolated in a transverse brain stem slice containing the pre-Bötzinger complex (PBC), the presumed site for respiratory rhythm generation. After blockade of respiratory network activity with 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), 18 of 52 inspiratory neurons exhibited endogenous pacemaker activity, which was voltage dependent, could be reset by brief current injections and could be entrained by repetitive stimuli. In the pacemaker group ( n = 18), eight neurons generated brief bursts (0.43 ± 0.03 s) at a relatively high frequency (1.05 ± 0.12 Hz) in CNQX. These bursts resembled the bursts that these neurons generated in the intact network during the interval between two inspiratory bursts. Cadmium (200 μM) altered but did not eliminate this bursting activity, while 0.5 μM tetrodotoxin suppressed bursting activity. Another set of pacemaker neurons (10 of 18) generated in CNQX longer bursts (1.57 ± 0.07 s) at a lower frequency (0.35 ± 0.01 Hz). These bursts resembled the inspiratory bursts generated in the intact network in phase with the population activity. This bursting activity was blocked by 50–100 μM cadmium or 0.5 μM tetrodotoxin. We conclude that the respiratory neural network contains pacemaker neurons with two types of bursting properties. The two types of pacemaker activities might have different functions within the respiratory network.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Marc Chevalier ◽  
Rafaël De Sa ◽  
Laura Cardoit ◽  
Muriel Thoby-Brisson

Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature) affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo.


1999 ◽  
Vol 79 (2) ◽  
pp. 325-360 ◽  
Author(s):  
Gérard Hilaire ◽  
Bernard Duron

In this review, the maturational changes occurring in the mammalian respiratory network from fetal to adult ages are analyzed. Most of the data presented were obtained on rodents using in vitro approaches. In gestational day 18 (E18) fetuses, this network functions but is not yet able to sustain a stable respiratory activity, and most of the neonatal modulatory processes are not yet efficient. Respiratory motoneurons undergo relatively little cell death, and even if not yet fully mature at E18, they are capable of firing sustained bursts of potentials. Endogenous serotonin exerts a potent facilitation on the network and appears to be necessary for the respiratory rhythm to be expressed. In E20 fetuses and neonates, the respiratory activity has become quite stable. Inhibitory processes are not yet necessary for respiratory rhythmogenesis, and the rostral ventrolateral medulla (RVLM) contains inspiratory bursting pacemaker neurons that seem to constitute the kernel of the network. The activity of the network depends on CO2 and pH levels, via cholinergic relays, as well as being modulated at both the RVLM and motoneuronal levels by endogenous serotonin, substance P, and catecholamine mechanisms. In adults, the inhibitory processes become more important, but the RVLM is still a crucial area. The neonatal modulatory processes are likely to continue during adulthood, but they are difficult to investigate in vivo. In conclusion, 1) serotonin, which greatly facilitates the activity of the respiratory network at all developmental ages, may at least partly define its maturation; 2) the RVLM bursting pacemaker neurons may be the kernel of the network from E20 to adulthood, but their existence and their role in vivo need to be further confirmed in both neonatal and adult mammals.


2000 ◽  
Vol 89 (5) ◽  
pp. 2015-2022 ◽  
Author(s):  
B. Wilken ◽  
J. M. Ramirez ◽  
F. Hanefeld ◽  
D. W. Richter

Aminophylline is a respiratory stimulant commonly used for the treatment of central apnea. Experiences from clinical practice, however, revealed that aminophylline is not reliably effective in preterm infants, whereas it is normally effective in infants and mature patients. In an established animal model for postnatal development of respiratory control mechanisms, we therefore examined the hypothesis that the clinical observations reflect a developmental change in the sensitivity of the central respiratory network to methylxanthines. The medullary respiratory network was isolated at different postnatal ages ( postnatal days 1–13; P1–P13) in a transverse mouse brain stem slice preparation. This preparation contains the pre-Bötzinger complex (PBC), a region that is critical for generation of respiratory rhythm. Spontaneous rhythmic respiratory activity was recorded from the hypoglossal (XII) rootlets and from neurons in the PBC by using the whole cell patch clamp technique. Bath-applied aminophylline [20 μM] increased the frequency (+41%) in neonatal animals (P1–P6) without affecting the amplitude of respiratory burst activity in XII rootlets. The same concentration of aminophylline did not have any significant effect on the frequency of respiratory XII bursts but increased the amplitude (+31%) in juvenile animals (P7–P13). In the same age group, aminophylline also augmented the amplitude and the duration of respiratory synaptic drive currents in respiratory PBC neurons. The data demonstrate that augmentation of the respiratory output is due to direct enhancement of central respiratory network activity and increase of synaptic drive of hypoglossal motoneurons in juvenile, but not neonatal, animals. This indicates a developmental change in the efficacy of aminophylline to reinforce central respiratory network activity. Therefore, we believe that the variable success in treating respiratory disturbances in premature infants reflects maturational changes in the expression of receptors and/or intracellular signal pathways in the central respiratory network.


2007 ◽  
Vol 293 (2) ◽  
pp. R901-R910 ◽  
Author(s):  
Stephen M. Johnson ◽  
Liana M. Wiegel ◽  
David J. Majewski

The role of pacemaker properties in vertebrate respiratory rhythm generation is not well understood. To address this question from a comparative perspective, brain stems from adult turtles were isolated in vitro, and respiratory motor bursts were recorded on hypoglossal (XII) nerve rootlets. The goal was to test whether burst frequency could be altered by conditions known to alter respiratory pacemaker neuron activity in mammals (e.g., increased bath KCl or blockade of specific inward currents). While bathed in artificial cerebrospinal fluid (aCSF), respiratory burst frequency was not correlated with changes in bath KCl (0.5–10.0 mM). Riluzole (50 μM; persistent Na+ channel blocker) increased burst frequency by 31 ± 5% ( P < 0.05) and decreased burst amplitude by 42 ± 4% ( P < 0.05). In contrast, flufenamic acid (FFA, 20–500 μM; Ca2+-activated cation channel blocker) reduced and abolished burst frequency in a dose- and time-dependent manner ( P < 0.05). During synaptic inhibition blockade with bicuculline (50 μM; GABAA channel blocker) and strychnine (50 μM; glycine receptor blocker), rhythmic motor activity persisted, and burst frequency was directly correlated with extracellular KCl (0.5–10.0 mM; P = 0.005). During synaptic inhibition blockade, riluzole (50 μM) did not alter burst frequency, whereas FFA (100 μM) abolished burst frequency ( P < 0.05). These data are most consistent with the hypothesis that turtle respiratory rhythm generation requires Ca2+-activated cation channels but not pacemaker neurons, which thereby favors the group-pacemaker model. During synaptic inhibition blockade, however, the rhythm generator appears to be transformed into a pacemaker-driven network that requires Ca2+-activated cation channels.


2007 ◽  
Vol 292 (1) ◽  
pp. C508-C516 ◽  
Author(s):  
Frank Funke ◽  
Mathias Dutschmann ◽  
Michael Müller

The pre-Bötzinger complex (PBC) in the rostral ventrolateral medulla contains a kernel involved in respiratory rhythm generation. So far, its respiratory activity has been analyzed predominantly by electrophysiological approaches. Recent advances in fluorescence imaging now allow for the visualization of neuronal population activity in rhythmogenic networks. In the respiratory network, voltage-sensitive dyes have been used mainly, so far, but their low sensitivity prevents an analysis of activity patterns of single neurons during rhythmogenesis. We now have succeeded in using more sensitive Ca2+ imaging to study respiratory neurons in rhythmically active brain stem slices of neonatal rats. For the visualization of neuronal activity, fluo-3 was suited best in terms of neuronal specificity, minimized background fluorescence, and response magnitude. The tissue penetration of fluo-3 was improved by hyperosmolar treatment (100 mM mannitol) during dye loading. Rhythmic population activity was imaged with single-cell resolution using a sensitive charge-coupled device camera and a ×20 objective, and it was correlated with extracellularly recorded mass activity of the contralateral PBC. Correlated optical neuronal activity was obvious online in 29% of slices. Rhythmic neurons located deeper became detectable during offline image processing. Based on their activity patterns, 74% of rhythmic neurons were classified as inspiratory and 26% as expiratory neurons. Our approach is well suited to visualize and correlate the activity of several single cells with respiratory network activity. We demonstrate that neuronal synchronization and possibly even network configurations can be analyzed in a noninvasive approach with single-cell resolution and at frame rates currently not reached by most scanning-based imaging techniques.


2006 ◽  
Vol 95 (3) ◽  
pp. 1843-1852 ◽  
Author(s):  
Clemens Neusch ◽  
Nestoras Papadopoulos ◽  
Michael Müller ◽  
Iris Maletzki ◽  
Stefan M. Winter ◽  
...  

Ongoing rhythmic neuronal activity in the ventral respiratory group (VRG) of the brain stem results in periodic changes of extracellular K+. To estimate the involvement of the weakly inwardly rectifying K+ channel Kir4.1 (KCNJ10) in extracellular K+ clearance, we examined its functional expression in astrocytes of the respiratory network. Kir4.1 was expressed in astroglial cells of the VRG, predominantly in fine astrocytic processes surrounding capillaries and in close proximity to VRG neurons. Kir4.1 expression was up-regulated during early postnatal development. The physiological role of astrocytic Kir4.1 was studied using mice with a null mutation in the Kir4.1 channel gene that were interbred with transgenic mice expressing the enhanced green fluorescent protein in their astrocytes. The membrane potential was depolarized in astrocytes of Kir4.1−/− mice, and Ba2+-sensitive inward K+ currents were diminished. Brain slices from Kir4.1−/− mice, containing the pre-Bötzinger complex, which generates a respiratory rhythm, did not show any obvious differences in rhythmic bursting activity compared with wild-type controls, indicating that the lack of Kir4.1 channels alone does not impair respiratory network activity. Extracellular K+ measurements revealed that Kir4.1 channels contribute to extracellular K+ regulation. Kir4.1 channels reduce baseline K+ levels, and they compensate for the K+ undershoot. Our data indicate that Kir4.1 channels 1) are expressed in perineuronal processes of astrocytes, 2) constitute the major part of the astrocytic Kir conductance, and 3) contribute to regulation of extracellular K+ in the respiratory network.


2008 ◽  
Vol 99 (5) ◽  
pp. 2114-2125 ◽  
Author(s):  
Andrew K. Tryba ◽  
Fernando Peña ◽  
Steven P. Lieske ◽  
Jean-Charles Viemari ◽  
Muriel Thoby-Brisson ◽  
...  

Many networks generate distinct rhythms with multiple frequency and amplitude characteristics. The respiratory network in the pre-Bötzinger complex (pre-Böt) generates both the low-frequency, large-amplitude sigh rhythm and a faster, smaller-amplitude eupneic rhythm. Could the same set of pacemakers generate both rhythms? Here we used an in vitro respiratory brainslice preparation. We describe a subset of synaptically isolated pacemakers that spontaneously generate two distinct bursting patterns. These two patterns resemble network activity including sigh-like bursts that occur at low frequencies and have large amplitudes and eupneic-like bursts with higher frequency and smaller amplitudes. Cholinergic neuromodulation altered the network and pacemaker bursting: fictive sigh frequency is increased dramatically, whereas fictive eupneic frequency is drastically lowered. The data suggest that timing and amplitude characteristics of fictive eupneic and sigh rhythms are set by the same set of pacemakers that are tuned by changes in the neuromodulatory state.


2007 ◽  
Vol 97 (3) ◽  
pp. 2283-2292 ◽  
Author(s):  
Benjamin J. Barnes ◽  
Chi-Minh Tuong ◽  
Nicholas M. Mellen

In mammals, respiration-modulated networks are distributed rostrocaudally in the ventrolateral quadrant of the medulla. Recent studies have established that in neonate rodents, two spatially separate networks along this column—the parafacial respiratory group (pFRG) and the pre-Bötzinger complex (preBötC)—are hypothesized to be sufficient for respiratory rhythm generation, but little is known about the connectivity within or between these networks. To be able to observe how these networks interact, we have developed a neonate rat medullary tilted sagittal slab, which exposes one column of respiration-modulated neurons on its surface, permitting functional imaging with cellular resolution. Here we examined how respiratory networks responded to hypoxic challenge and opioid-induced depression. At the systems level, the sagittal slab was congruent with more intact preparations: hypoxic challenge led to a significant increase in respiratory period and inspiratory burst amplitude, consistent with gasping. At opioid concentrations sufficient to slow respiration, we observed periods at integer multiples of control, matching quantal slowing. Consistent with single-unit recordings in more intact preparations, respiratory networks were distributed bimodally along the rostrocaudal axis, with respiratory neurons concentrated at the caudal pole of the facial nucleus, and 350 microns caudally, at the level of the pFRG and the preBötC, respectively. Within these regions neurons active during hypoxia- and/or opioid-induced depression were ubiquitous and interdigitated. In particular, contrary to earlier reports, opiate-insensitive neurons were found at the level of the preBötC.


2001 ◽  
Vol 86 (1) ◽  
pp. 59-74 ◽  
Author(s):  
Christopher A. Del Negro ◽  
Sheree M. Johnson ◽  
Robert J. Butera ◽  
Jeffrey C. Smith

We used the testable predictions of mathematical models proposed by Butera et al. to evaluate cellular, synaptic, and population-level components of the hypothesis that respiratory rhythm in mammals is generated in vitro in the pre-Bötzinger complex (pre-BötC) by a heterogeneous population of pacemaker neurons coupled by fast excitatory synapses. We prepared thin brain stem slices from neonatal rats that capture the pre-BötC and maintain inspiratory-related motor activity in vitro. We recorded pacemaker neurons extracellularly and found: intrinsic bursting behavior that did not depend on Ca2+ currents and persisted after blocking synaptic transmission; multistate behavior with transitions from quiescence to bursting and tonic spiking states as cellular excitability was increased via extracellular K+concentration ([K+]o); a monotonic increase in burst frequency and decrease in burst duration with increasing [K+]o; heterogeneity among different cells sampled; and an increase in inspiratory burst duration and decrease in burst frequency by excitatory synaptic coupling in the respiratory network. These data affirm the basis for the network model, which is composed of heterogeneous pacemaker cells having a voltage-dependent burst-generating mechanism dominated by persistent Na+ current ( I NaP) and excitatory synaptic coupling that synchronizes cell activity. We investigated population-level activity in the pre-BötC using local “macropatch” recordings and confirmed these model predictions: pre-BötC activity preceded respiratory-related motor output by 100–400 ms, consistent with a heterogeneous pacemaker-cell population generating inspiratory rhythm in the pre-BötC; pre-BötC population burst amplitude decreased monotonically with increasing [K+]o (while frequency increased), which can be attributed to pacemaker cell properties; and burst amplitude fluctuated from cycle to cycle after decreasing bilateral synaptic coupling surgically as predicted from stability analyses of the model. We conclude that the pacemaker cell and network models explain features of inspiratory rhythm generation in vitro.


Sign in / Sign up

Export Citation Format

Share Document