Sustained depolarizing potentials in reticulospinal axons during evoked seizure activity in lamprey spinal cord

1978 ◽  
Vol 41 (2) ◽  
pp. 384-393 ◽  
Author(s):  
G. Matthews ◽  
W. O. Wickelgren

1. Intracellular recordings were made from lamprey reticulospinal axons (Muller axons) during seizures evoked by electrical stimulation of the isolated spinal cord in saline containing either 0 Cl or 1 mM picrotoxin. The seizures had tonic and clonic-phases similar to ictal seizures in mammalian brain. 2. During seizures Muller axons were depolarized by 10-15 mV. These seizure-depolarizations were not due to any direct effect of the evoking stimulus on the Muller axons themselves nor were they initiated by an accumulation or extracellular potassium. 3. A decrease in axonal input resistance occurred during a seizure-depolarization. Also, the amplitude of a seizure-depolarization was decreased by depolarizing the axon 5-15 mV with injected current. Further, hyperpolarizing the axon increased the amplitude of the seizure-depolarization, but the growth flattened out beyond 30-40 mV of hyperpolarization. The decrease in input resistance during the seizure-depolarization and the dependence of the response amplitude on axonal membrane potential suggested that the seizure-depolarization was an excitatory synaptic potential. However, the failure of the seizure-depolarization amplitude to continue to grow at membrane potentials greater than 30 mV negative to the resting potential was not consistent with this interpretation. 4. A synaptic conductance change as the cause of the seizure-depolarization was ruled out by setting the axonal membrane potential at different levels with injected current and monitoring the input resistance of the axon before and during seizure-depolarizations. It was found that no change in input resistance occurred during the seizure-depolarization when the axon was hyperpolarized more than approximately 30 mV, the same potential at which the growth in the response amplitude ceased. From analysis of these data and the passive current-voltage properties of Muller axons it is concluded that the seizure-depolarization is not a chemical synaptic potential, but rather the result of the passive injection of depolarizing current into the axons. 5. The source of the depolarizing current which flows into Muller axons during seizures is probably paroxysmal action-potential activity in spinal motoneurons and interneurons, many of which are electrically coupled to Muller axons.

1997 ◽  
Vol 78 (5) ◽  
pp. 2235-2245 ◽  
Author(s):  
Xiao Wen Fu ◽  
Borys L. Brezden ◽  
Shu Hui Wu

Fu, Xiao Wen, Borys L. Brezden, and Shu Hui Wu. Hyperpolarization-activated inward current in neurons of the rat's dorsal nucleus of the lateral lemniscus in vitro. J. Neurophysiol. 78: 2235–2245, 1997. The hyperpolarization-activated current ( I h) underlying inward rectification in neurons of the rat's dorsal nucleus of the lateral lemniscus (DNLL) was investigated using whole cell patch-clamp techniques. Patch recordings were made from DNLL neurons of young rats (21–30 days old) in 400 μm tissue slices. Under current clamp, injection of negative current produced a graded hyperpolarization of the cell membrane, often with a gradual sag in the membrane potential toward the resting value. The rate and magnitude of the sag depended on the amount of hyperpolarizing current. Larger current resulted in a larger and faster decay of the voltage. Under voltage clamp, hyperpolarizing voltage steps elicited a slowly activating inward current that was presumably responsible for the sag observed in the voltage response to a steady hyperpolarizing current recorded under current clamp. Activation of the inward current ( I h) was voltage and time dependent. The current just was seen at a membrane potential of −70 mV and was activated fully at −140 mV. The voltage value of half-maximal activation of I h was −78.0 ± 6.0 (SE) mV. The rate of I h activation was best approximated by a single exponential function with a time constant that was voltage dependent, ranging from 276 ± 27 ms at −100 mV to 186 ± 11 ms at −140 mV. Reversal potential ( E h) of I h current was more positive than the resting potential. Raising the extracellular potassium concentration shifted E h to a more depolarized value, whereas lowering the extracellular sodium concentration shifted E h in a more negative direction. I h was sensitive to extracellular cesium but relatively insensitive to extracellular barium. The current amplitude near maximal-activation (about −140 mV) was reduced to 40% of control by 1 mM cesium but was reduced to only 71% of control by 2 mM barium. When the membrane potential was near the resting potential (about −60 mV), cesium had no effect on the membrane potential, current-evoked firing rate and input resistance but reduced the spontaneous firing. When the membrane potential was more negative than −70 mV, cesium hyperpolarized the cell, decreased current-evoked firing and increased the input resistance. I h in DNLL neurons does not contribute to the normal resting potential but may enhance the extent of excitation, thereby making the DNLL a consistently powerful inhibitory source to upper levels of the auditory system.


1976 ◽  
Vol 39 (3) ◽  
pp. 459-473 ◽  
Author(s):  
P. C. Magherini ◽  
W. Precht

Electrical properties of the spinal motoneurons of Rana temporaria and R. esculenta were investigated in the in situ spinal cord at 20-22 degrees C by means of intracellular recording and current injection. Input resistance values depended on the method of measurement in a given cell but were generally inversely related to axon conduction velocity. The membrane-potential response to a subthreshold current pulse was composed of at least two exponentials with mean time constants of 2.5 and 20 ms. The membrance potential reached by the peak of a spike depended on the mode of spike initiation and membrane potential. Preceding a suprathreshold depolarization by a hyperpolarizing pulse could delay and eliminate spike initiation, similar to effects reported in certain invertebrate neurons. Antidromic invasion frequently failed in motoneurons of normal resting potential. Antidromic spike components (m,IS, SD) were similar to those of cat motoneurons. The delayed depolarization and the long afterhyperpolarization following an antidromic spike had many properties in common with the analogous afterpotentials of cat motoneurons. The reversal potential of the short afterhyperpolarization occurring immediately after the spike varied with resting potential and could not be used to determine potassium equilibrium potential. Sustained rhythmic firing could be evoked by continuous synaptic drive or long pulses of injected current. The plot of firing rate versus current strength had a substantial linear region. Both steady firing and adaptation properties varied markedly with motoneuron input resistance.


1990 ◽  
Vol 259 (3) ◽  
pp. C402-C408 ◽  
Author(s):  
E. P. Burke ◽  
K. M. Sanders

Previous studies have suggested that the membrane potential gradient across the circular muscle layer of the canine proximal colon is due to a gradient in the contribution of the Na(+)-K(+)-ATPase. Cells at the submucosal border generate approximately 35 mV of pump potential, whereas at the myenteric border the pump contributes very little to resting potential. Results from experiments in intact muscles in which the pump is blocked are somewhat difficult to interpret because of possible effects of pump inhibitors on membrane conductances. Therefore, we studied isolated colonic myocytes to test the effects of ouabain on passive membrane properties and voltage-dependent currents. Ouabain (10(-5) M) depolarized cells and decreased input resistance from 0.487 +/- 0.060 to 0.292 +/- 0.040 G omega. The decrease in resistance was attributed to an increase in K+ conductance. Studies were also performed to measure the ouabain-dependent current. At 37 degrees C, in cells dialyzed with 19 mM intracellular Na+ concentration [( Na+]i), ouabain caused an inward current averaging 71.06 +/- 7.49 pA, which was attributed to blockade of pump current. At 24 degrees C or in cells dialyzed with low [Na+]i (11 mM), ouabain caused little change in holding current. With the input resistance of colonic cells, pump current appears capable of generating at least 35 mV. Thus an electrogenic Na+ pump could contribute significantly to membrane potential.


1988 ◽  
Vol 254 (3) ◽  
pp. C423-C431 ◽  
Author(s):  
H. Yamaguchi ◽  
T. W. Honeyman ◽  
F. S. Fay

Studies were carried out to determine the effects of the beta-adrenergic agent, isoproterenol (ISO), on membrane electrical properties in single smooth muscle cells enzymatically dispersed from toad stomach. In cells bathed in buffer of physiological composition, the average resting potential was -56.4 +/- 1.4 mV (mean +/- SE, n = 35). The dominant effect of exposure to ISO was hyperpolarization. The hyperpolarization was apparent in all cells studied and averaged 11.6 +/- 1.2 mV (n = 27). In the majority of the cells, hyperpolarization was accompanied by a decreased input resistance (Rin). Often the change in resistance appeared to lag behind the change in membrane potential. The lack of coincident changes in membrane potential and resistance may reflect a superposition of the outward rectification properties of the membrane on beta-adrenergic-induced increases in ionic conductance. In about half of the cells, an initial small depolarization (3.1 +/- 0.3 mV, n = 14) was accompanied by a small but distinct increase in Rin (12 +/- 2.5%). When membrane potential was made more negative than the estimated equilibrium potential for K+ (EK) by injection of current, ISO also produced biphasic effects, an initial hyperpolarization which reversed to a sustained depolarization to a value (-90 mV) near the estimated EK. The hyperpolarization by ISO could be diminished in a time-dependent manner by previous exposure to ouabain. The inhibition by ouabain, however, appeared to be a fortuitous result of glycoside-induced positive shifts in EK. These observations indicate that the dominant electrophysiological effect of beta-adrenergic stimuli is to hyperpolarize the cell membrane.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 108 (1) ◽  
pp. 305-314
Author(s):  
B. L. BREZDEN ◽  
D. R. GARDNER

The mean resting potential in the heart ventricle muscle cells of the freshwater snail Lymnaea stagnalis was found to be −61.2±3.5 (˙˙) mV (ranging from −56mV to −68mV). The average intracellular potassium concentration was estimated to be 51.5±14.6(˙˙) m (ranging from 27.8 m to 77.3 m). The membrane of the heart ventricle muscle cells appears to be permeable to both potassium and chloride, as changes in the extracellular concentration of either of these ions resulted in a change in the membrane potential. A ten-fold change in the extracellular potassium concentration was associated with a 50.4±3.8(˙˙) mV slope when the potassium concentration was above about 6 m. Deviations from the straight-line relation predicted for a potassium electrode could be accounted for by introducing a term for sodium permeability. The ionic basis of the membrane potential in these cells can be described by a modified form of the Goldman-Hodgkin- Katz equation.


1987 ◽  
Vol 58 (1) ◽  
pp. 180-194 ◽  
Author(s):  
F. R. Morales ◽  
P. A. Boxer ◽  
S. J. Fung ◽  
M. H. Chase

1. The electrophysiological properties of alpha-motoneurons in old cats (14–15 yr) were compared with those of adult cats (1–3 yr). These properties were measured utilizing intracellular recording and stimulating techniques. 2. Unaltered in the old cat motoneurons were the membrane potential, action potential amplitude, and slopes of the initial segment (IS) and soma dendritic (SD) spikes, as well as the duration and amplitude of the action potential's afterhyperpolarization. 3. In contrast, the following changes in the electrophysiological properties of lumbar motoneurons were found in the old cats: a decrease in axonal conduction velocity, a shortening of the IS-SD delay, an increase in input resistance, and a decrease in rheobase. 4. In spite of these considerable changes in motoneuron properties in the old cat, normal correlations between different electrophysiological properties were maintained. The following key relationships, among others, were the same in adult and old cat motoneurons: membrane potential polarization versus action potential amplitude, duration of the afterhyperpolarization versus motor axon conduction velocity, and rheobase versus input conductance. 5. A review of the existing literature reveals that neither chronic spinal cord section nor deafferentation (13, 21) in adult animals produce the changes observed in old cats. Thus we consider it unlikely that a loss of synaptic contacts was responsible for the modifications in electrophysiological properties observed in old cat motoneurons. 6. We conclude that during old age there are significant changes in the soma-dendritic portion of cat motoneurons, as indicated by the modifications found in input resistance, rheobase, and IS-SD delay, as well as significant changes in their axons, as indicated by a decrease in conduction velocity.


1992 ◽  
Vol 70 (S1) ◽  
pp. S92-S97 ◽  
Author(s):  
Hiroe Inokuchi ◽  
Megumu Yoshimura ◽  
Canio Polosa ◽  
Syogoro Nishi

Intracellular recordings were made from 168 sympathetic preganglionic neurons in the slice of the second or third thoracic spinal-cord segment of the adult cat to study the actions of noradrenaline on these neurons. Noradrenaline, applied by superfusion (0.5–50 μM), produced membrane depolarization in 73 neurons and membrane hyperpolarization in 39 neurons. In 26 neurons noradrenaline produced a biphasic response (depolarization–hyperpolarization or vice versa). The depolarization was blocked by prazosin, while the hyperpolarization was blocked by yohimbine. The noradrenaline-induced depolarization was associated with an increase in neuron input resistance, while the noradrenaline-induced hyperpolarization was associated with a decrease in neuron input resistance. Both responses decreased in amplitude with membrane hyperpolarization and were nullified at around the potassium equilibrium potential EK. The null potential of both responses became more and less negative with a decrease and an increase, respectively, in the extracellular potassium concentration. When the membrane potential was made more negative than EK, the noradrenaline-induced hyperpolarization reversed to depolarization in all cases, whereas in only 4 of 12 cases did the noradrenaline-induced depolarization reverse to hyperpolarization. These data suggest that the noradrenaline-induced depolarization is a result of a decrease, while the noradrenaline-induced hyperpolarization is a result of an increase in K+ conductance. Cobalt (2 mM), low calcium – high magnesium, and intracellular EGTA markedly reduced or abolished the noradrenaline-induced depolarization but had no significant effect on the noradrenaline-induced hyperpolarization. Barium (2 mM) depressed both responses. Tetraethylammonium (10–30 mM), 4-aminopyridine (3 mM), and cesium (2 mM) had no effect on either response. These data suggest that the noradrenaline-induced depolarization is a result of an inactivation of a background calcium-sensitive K+ conductance, while the noradrenaline-induced hyperpolarization is due to activation of a calcium-insensitive potassium conductance.Key words: K+ conductances, catecholamines, Ca2+ dependent, K+ current, spinal cord.


2000 ◽  
Vol 203 (4) ◽  
pp. 757-764
Author(s):  
P. Rudberg ◽  
O. Sand

In normal recording solution, the swimming pattern of the freshwater ciliate Coleps hirtus, belonging to the class Prostomatea, consists of alternating periods of nearly linear forward swimming and circular swimming within a small area. Current-clamp recordings were performed to elucidate the mechanism for this behaviour. No members of this class have previously been studied using electrophysiological techniques. The ciliates were maintained in culture and fed on the planctonic alga Rhodomonas minuta. The membrane potential showed spontaneous shifts between a more negative (deep) level of approximately −50 mV and a less negative (shallow) level of approximately −30 mV. The input resistance and capacitance at the more negative level were approximately 400 M capomega and 120 pF respectively. C. hirtus displayed a pronounced inward rectification, which was virtually insensitive to 1 mmol l(−1) Cs(+) and almost completely blocked by 1 mmol l(−1) Ba(2+). Depolarising current injections failed to evoke graded, regenerative Ca(2+) spikes. However, current-induced depolarisations from the more negative potential level (−50 mV) showed a pronounced shoulder during the repolarising phase. Increased current injections prolonged the shoulder, which occasionally stabilised at the shallow membrane potential (−30 mV). The membrane potential could be shifted to the deep level by brief hyperpolarising current injections. Similar biphasic membrane properties have not been reported previously in any ciliate. The bistability of the membrane potential was abolished in Ca(2+)-free solution containing Co(2+) or Mg(2+). In Ca(2+)-free solution containing 1 mmol l(−1) Ba(2+), brief depolarising current injections at the deep potential level evoked all-or-nothing action potentials with a prolonged plateau coinciding with the shallow potential. We conclude that the deep membrane potential in C. hirtus corresponds to the traditional resting potential, whereas the shallow level is a Ca(2+)-dependent plateau potential. In normal solution, the direction of the ciliary beat was backwards at the deep potential level and forwards at the shallow membrane potential, probably reflecting the two main phases of the swimming pattern.


1985 ◽  
Vol 53 (2) ◽  
pp. 557-571 ◽  
Author(s):  
M. McCarren ◽  
B. E. Alger

We have used intracellular recording techniques to study the use-dependence of evoked inhibitory postsynaptic potentials (IPSPs) in rat CA1 hippocampal pyramidal cells. We determined reversal potentials and conductance changes associated with IPSPs and responses to directly applied gamma-aminobutyric acid (GABA). The IPSP depression could be seen after a single conditioning stimulus. This depression appeared to be due primarily to a 50% decrease in IPSP conductance (gIPSP). Trains of stimulating pulses (50 pulses at 5 or 10 Hz) produced more pronounced effects than a single conditioning pulse. Suprathreshold repetitive stimulation of stratum radiatum (SR) produced epileptiform burst firing and greater depression of IPSPs than did alvear (ALV) or subthreshold SR stimulation. During suprathreshold SR stimulation the IPSP was nearly abolished and the membrane potential could become less negative than the resting potential. A masking effect of facilitated depolarizing potentials on IPSPs was unlikely since IPSPs accompanied by little or no depolarizing potential were also depressed by SR trains. The 75% reduction in IPSP conductance found after repetitive stimulation confirmed that an overlapping conductance was not responsible for the depression of the IPSP. The GABA-induced conductance increase was not depressed by identical trains. Trains of stimulation induced depolarizing shifts in equilibrium potentials for the IPSP (EIPSP) and GABA (EGABA) of approximately 10 mV. These shifts were always greater after SR trains than after ALV trains. Simultaneous recordings of membrane potential and extracellular potassium concentration ([K+]o) with K+-sensitive microelectrodes revealed a direct correlation between the two during a stimulus train. Membrane potential depolarized as much as 18 mV from the peak of the IPSP and [K+]o could increase to a maximum of 10 mM during some trains. A depressant effect (of approximately 50%) of K+ on IPSPs was demonstrated by brief pressure ejection of K+ near the soma. We conclude that repetitive stimulation depresses gIPSP and shifts EIPSP in the depolarizing direction. Whereas gIPSP began to decline after a single conditioning pulse, the additional depression of IPSPs produced by stimulus trains was due in large part to shifts in EIPSP. Depression of gIPSP was not due to desensitization or block of ionic conductances, since gGABA was not reduced. The EIPSP may change as a result of increases in [K+]o.


1989 ◽  
Vol 62 (4) ◽  
pp. 924-934 ◽  
Author(s):  
M. J. Correia ◽  
B. N. Christensen ◽  
L. E. Moore ◽  
D. G. Lang

1. Hair cells were enzymatically dissociated from the neuroepithelium (cristae ampullares) of the semicircular canals of white king pigeons (Columba livia). Those hair cells determined to be type II by an anatomic criterion, the ratio of the minimum width of the neck to the width of the cuticular plate, were studied with the use of the whole cell patch-clamp technique. 2. The mean +/- SD zero-current membrane potential, Vz, was found to be -54 +/- 12 mV for anterior crista hair cells (n = 71), -62 +/- 14 mV for posterior crista hair cells (n = 14), and -55 +/- 12 mV for lateral (horizontal) crista hair cells (n = 18). The mean +/- SD value of Vz for hair cells from all cristae (n = 103) was -56 +/- 13 mV. 3. Active and passive membrane properties were calculated in the time domain, in voltage- or current-clamp mode, from responses to voltage or current pulses and, in the frequency domain, by fitting a membrane model to admittance magnitude and phase data resulting from current responses to sum-of-sines voltages at different d.c. levels of voltage-clamp membrane potential. 4. The average value +/- SE of input resistance (Rin), over the range from -100 to -60 mV, was found to 1.5 +/- 0.3 G omega from a mean-voltage-as-a-function-of-current plot, V-I, (n = 7) and a mean of 1.4 +/- 0.3 G omega from individual (n = 15) current-as-a-function-of-voltage plots, I-V. A lower mean value 0.8 +/- 0.4 G omega was obtained for the input resistance from frequency-domain calculations for a different set of cells (n = 21). Also, in two different sets of cells, average input capacitance (Cin) was determined to be 12 +/- 3 pF (n = 7) from time-domain estimates and 14 +/- 3 pF (n = 21) from frequency-domain estimates. The (Rin)(Cin) product was 11 ms based on frequency-domain estimates and 17 ms from time-domain estimates. 5. I-V curves for hair cells voltage clamped at -60 mV showed some anomalous rectification for hyperpolarizations between -60 and -120 mV but no detectable N-shape for depolarizations between -50 and 90 mV. The I-V relation showed increasing slope with depolarization through the resting potential (Vz) and increased linearly between -40 and 80 mV; the best-fit straight-line maximum slope conductance for six cells over this range was 17.4 +/- 0.3 nS.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document