Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons

1983 ◽  
Vol 49 (4) ◽  
pp. 948-960 ◽  
Author(s):  
J. O. Dostrovsky ◽  
Y. Shah ◽  
B. G. Gray

1. This study examined the inhibitory effects elicited by brain stem stimulation on the somatosensory responses of trigeminal medullary dorsal horn (subnucleus caudalis of the spinal trigeminal nucleus) neurons. Single-unit extracellular recordings were obtained in chloralose-anesthetized cats. Neurons were classified as wide dynamic range (WDR), nociceptive specific (NS), or low-threshold mechanoreceptive (LTM). Conditioning stimuli were delivered to the periaqueductal gray (PAG), nucleus cuneiformis (CU), nucleus raphe magnus (NRM), nucleus reticularis gigantocellularis (NGC), and nucleus reticularis magnocellularis (NMC). 2. Over 97% of the neurons tested could be inhibited by stimulation in all regions except PAG. Stimulation in the PAG inhibited 91% of the neurons tested. There was no statistically significant difference in the incidence of inhibition of WDR and NS nociceptive (noci) neurons and the LTM nonnociceptive (nonnoci) neurons. 3. Mean stimulation intensities necessary to produce inhibition were determined for each neuron from each stimulation site. The current thresholds necessary to inhibit the responses of noci neurons were found to be significantly lower, on the average, than those of nonnoci neurons at stimulation sites in the PAG, CU, and NGC. 4. Inhibition of the responses of WDR neurons required a lower mean current than for NS neurons but was statistically significant only for PAG and NGC. Thresholds for inhibiting the responses of NS neurons were similar to those for inhibiting the responses of LTM neurons for all regions except CU, where LTM thresholds were markedly but not significantly higher. 5. Stimulation thresholds were found to be lowest in NMC, while in NGC, NRM, and CU they were all similar and slightly higher. Stimulation in the PAG required the highest currents to produce inhibition. 6. These results indicate that stimulation in NRM and PAG not only inhibits the responses of noci neurons but also those of nonnoci neurons. Furthermore, stimulation in reticular regions adjacent to NRM and PAG is frequently even more effective in inhibiting the responses of both noci and nonnoci neurons. In addition, WDR neurons are more effectively inhibited than NS or LTM neurons. These results are compared with those obtained using similar methods in cat lumbar dorsal horn.

2001 ◽  
Vol 86 (6) ◽  
pp. 2868-2877 ◽  
Author(s):  
Koichi Iwata ◽  
Takao Imai ◽  
Yoshiyuki Tsuboi ◽  
Akimasa Tashiro ◽  
Akiko Ogawa ◽  
...  

The effects of inferior alveolar nerve (IAN) transection on escape behavior and MDH neuronal activity to noxious and nonnoxious stimulation of the face were precisely analyzed. Relative thresholds for escape from mechanical stimulation applied to the whisker pad area ipsilateral to the transection were significantly lower than that for the contralateral and sham-operated whisker pad until 28 days after the transection, then returned to the preoperative level at 40 days after transection. A total of 540 neurons were recorded from the medullary dorsal horn (MDH) of the nontreated naive rats [low-threshold mechanoreceptive (LTM), 27; wide dynamic range (WDR), 31; nociceptive specific (NS), 11] and sham-operated rats with skin incision (LTM, 34; WDR, 30; NS, 23) and from the ipsilateral (LTM, 82; WDR, 82; NS, 31) and contralateral MDH relative to the IAN transection (LTM, 77; WDR, 82; NS, 33). The electrophysiological properties of these neurons were precisely analyzed. Background activity of WDR neurons on the ipsilateral side relative to the transection was significantly increased at 2–14 days after the operation as compared with that of naive rats. Innocuous and noxious mechanical-evoked responses of LTM and WDR neurons were significantly enhanced at 2–14 days after IAN transection. The mean area of the receptive fields of WDR neurons was significantly larger on the ipsilateral MDH at 2–7 days after transection than that of naive rats. We could not observe any modulation of thermal responses of WDR and NS neurons following IAN transection. Also, no MDH neurons were significantly affected in the rats with sham operations. The present findings suggest that the increment of neuronal activity of WDR neurons in the MDH following IAN transection may play an important role in the development of the mechano-allodynia induced in the area adjacent to the area innervated by the injured nerve.


1998 ◽  
Vol 80 (4) ◽  
pp. 2210-2214 ◽  
Author(s):  
Kai-Ming Zhang ◽  
Xiao-Min Wang ◽  
Angela M. Peterson ◽  
Wen-Yan Chen ◽  
Sukhbir S. Mokha

Kai-Ming Zhang, Xiao-Min Wang, Angela M. Peterson, Wen-Yan Chen, and Sukhbir S. Mokha. α2-Adrenoceptors modulate NMDA-evoked responses of neurons in the superficial and deeper dorsal horn of the medulla. J. Neurophysiol. 80: 2210–2214, 1998. Extracellular single unit recordings were made from neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis) in 21 male rats anesthetized with urethan. NMDA produced an antagonist-reversible excitation of 46 nociceptive as well as nonnociceptive neurons. Microiontophoretic application of a preferential α2-adrenoceptor (α2AR) agonist, (2-[2,6-dichloroaniline]-2-imidazoline) hydrochloride (clonidine), reduced the NMDA-evoked responses of 86% (6/7) of nociceptive-specific (NS) neurons, 82% (9/11) of wide dynamic range (WDR) neurons, and 67% (4/6) of low-threshold (LT) neurons in the superficial dorsal horn. In the deeper dorsal horn, clonidine inhibited the NMDA-evoked responses of 94% (16/17) of NS and WDR neurons and 60% (3/5) of LT neurons. Clonidine facilitated the NMDA-evoked responses in 14% (1/17) of NS, 9% (1/11) of WDR, and 33% (2/6) of LT neurons in the superficial dorsal horn. Idazoxan, an α2AR antagonist, reversed the inhibitory effect of clonidine in 90% (9/10) of neurons, whereas prazosin, an α1-adrenoceptor antagonist with affinity for α2BAR, and α2CAR, were ineffective. We suggest that activation of α2ARs produces a predominantly inhibitory modulation of the NMDA-evoked responses of nociceptive neurons in the medullary dorsal horn.


1989 ◽  
Vol 62 (2) ◽  
pp. 437-449 ◽  
Author(s):  
W. Maixner ◽  
R. Dubner ◽  
D. R. Kenshalo ◽  
M. C. Bushnell ◽  
J. L. Oliveras

1. We examined the activity of thermally sensitive trigeminothalamic neurons and nonprojection neurons in the medullary dorsal horn (trigeminal nucleus caudalis) in three monkeys performing thermal and visual detection tasks. 2. An examination of neuronal stimulus-response functions, obtained during thermal-detection tasks in which noxious heat stimuli were applied to the face, indicated that wide-dynamic-range neurons (WDR, responsive to innocuous mechanical stimuli with greater responses to noxious mechanical stimuli) could be subclassified based on the slope values of linear regression lines. WDR1 neurons exhibited significantly greater sensitivity to noxious heat stimulation than WDR2 neurons or nociceptive-specific neurons (NS, responsive only to noxious stimuli). 3. In one behavioral task, the monkeys detected 1.0 degrees C increases in noxious heat from preceding noxious heat stimuli ranging from 44 to 48 degrees C. WDR1, WDR2, and NS neurons increased their discharge frequency as a function of the intensity of the first noxious heat temperature (T1) as well as the final temperature (T2). The responses of WDR1 neurons were greater than those produced by WDR2 or NS neurons across all the temperatures examined. The order of stimulus presentation affected the responses of WDR1 neurons to 1.0 degrees C increases in the noxious heat range but not those of WDR2 or NS neurons. 4. In a second behavioral task, the monkeys detected small increases in noxious heat (0.2-0.8 degrees C) from a first temperature of 46 degrees C. Although the responses of all three classes of neurons were monotonically related to stimulus intensity, WDR1 neurons exhibited greater sensitivity to small temperature increases than either WDR2 or NS neurons. 5. Subpopulations of all three classes of neurons exhibited responses that were independent of thermal stimulus parameters or sensory modality and that only occurred during the behavioral task. These task-related responses were time-locked to specific behavioral events associated with trial initiation and trial continuation. 6. These data provide evidence that a subpopulation of WDR neurons is the dorsal horn cell type most sensitive to small increases in noxious heat in the 45-49 degrees C temperature range and provides the most information about stimulus intensity. The findings support the view that nociceptive neurons have the capacity to precisely encode stimulus features in the noxious range and that WDR neurons are likely to participate in the monkeys' ability to perceive the intensity of such stimuli.


1983 ◽  
Vol 50 (6) ◽  
pp. 1433-1445 ◽  
Author(s):  
G. F. Gebhart ◽  
J. Sandkuhler ◽  
J. G. Thalhammer ◽  
M. Zimmermann

The descending inhibition of spinal neuronal responses by focal electrical stimulation in the periaqueductal gray (PAG) or nucleus raphe magnus (NRM) was quantitatively studied and compared in the anesthetized, paralyzed cat. All 60 dorsal horn neurons studied were driven by electrical stimulation of hindlimb cutaneous nerves at strengths supramaximal for activation of A-alpha,delta- and C-fibers, and 52 also responded to noxious radiant heating (50 degrees C, 10 s) of the skin of the foot- or toepads; 8 units had receptive fields in the hairy skin of the hindlimb. All neurons studied also responded to mechanical stimuli; recording sites were located in laminae I-VI of the dorsal horn. The inhibition of spinal neuronal heat-evoked responses by stimulation in the PAG or NRM differed quantitatively when examined on the same spinal neurons. Inhibition of heat-evoked spinal neuronal responses occurred at a lower threshold of stimulation in the NRM than in the PAG. The mean intensity of stimulation in the NRM producing an attenuation to 50% of the control 50 degrees C heat-evoked response was significantly lower than the mean intensity of stimulation in the PAG producing a 50% attenuation of the same spinal units. The mean magnitude of inhibition produced by stimulation in the NRM was significantly greater than that produced on the same spinal units by the same intensity of stimulation in the PAG. However, stimulation in the NRM and PAG produced the same mean percent change in inhibition per 100-microA increase in the intensity of stimulation. Thus, the slopes of the recruitment of descending inhibition from the PAG and the NRM as a function of increasing intensities of stimulation are the same; the lines of recruitment of inhibition are parallel. When examined on the same dorsal horn units, stimulation in the PAG influenced their intensity coding to graded noxious heating of the skin differently than did stimulation in the NRM. The responses of the class 2 and class 3 spinal units examined to increasing temperatures of heat applied to the skin was a monotonic linear function throughout the temperature range studied (42-50 degrees C). Stimulation in the PAG decreased the slope of the stimulus-response function (SRF) without affecting unit thresholds of response, thus influencing the gain control of nociceptive transmission in the dorsal horn. Stimulation in the NRM produced a parallel shift to the right of the SRF, influencing the set point and threshold of response.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 70 (6) ◽  
pp. 2260-2275 ◽  
Author(s):  
P. Peppel ◽  
F. Anton

1. Most quantitative examinations of nociception are performed with thermal or mechanical stimuli. Because nociceptive processing mechanisms may depend on the modality of the stimuli, comparable studies on chemonociception are necessary. 2. We examined the activity of chemonociceptive medullary dorsal horn neurons in halothane-anesthetized rats. For controlled noxious chemical stimulation, defined CO2 pulses were applied to the nasal mucosa. The effects of stimulus intensity, duration, and interstimulus interval (ISI) were tested by performing three different CO2 stimulation protocols (see below). 3. The recorded neurons were characterized by intranasal and facial stimuli of different modalities. The cells received input from intranasal A delta- and/or C-fibers. All tested neurons also responded to other intranasally applied irritants, e.g., mustard oil. Furthermore, the units were sensitive to intranasal high-threshold mechanical stimulation and to facial mechanical stimulation. According to the properties of their facial mechanoreceptive fields, the units were classified as wide dynamic range (WDR) or nociceptive specific (NS) neurons. The majority of the cells also responded to facially applied noxious heat stimuli, so that most of the recorded neurons were found to be multimodal. Some of the neurons, in addition, had convergent input from primary afferents innervating the maxillary tooth pulps or the cornea and periorbital structures. 4. In the first stimulation protocol we presented four different CO2 concentrations (25, 50, 75, and 100%; stimulus duration 2 s). In total, each concentration was applied 10 times (2 trains of 5 stimuli). Stimulus response functions (SRFs) were computed with average responses to identical stimuli. All but 2 of the 23 tested neurons displayed enhanced responses after stimulation with increasing intensities. In general, WDR cells (n = 15) discharged more vigorously to the same CO2 concentration than NS cells (n = 8). WDR neurons discriminated more reliably between stimulus intensities in the low to moderate range (25–50% CO2) than NS cells. Both categories of neurons, however, discriminated equally well in the moderate- to high-intensity range (50–75% CO2). The discriminatory capacity of WDR and NS neurons was reduced in the highest concentration range (75–100% CO2). The proportion of NS neurons significantly discriminating between these intensities tended to be higher compared with WDR neurons when stimuli were applied with long ISIs (120 s). 5. To examine the effects of the duration of the ISI, identical test sequences were performed with ISIs of 30 and 120 s. (ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 58 (2) ◽  
pp. 327-341 ◽  
Author(s):  
J. Sandkuhler ◽  
Q. G. Fu ◽  
M. Zimmermann

1. The spinal pathways for tonic and stimulation-produced descending inhibition of spinal nociceptive neurons were investigated in anesthetized paralyzed cats. Reversible circumscribed blocks were produced at various depths in the lateral funiculi (LF) at L1-L2 using the microinjection of the local anesthetic lidocaine. The total amount of tonic descending inhibition in the absence of LF blocks was evaluated by monitoring the spinal neuronal activity during reversible spinalization by cold block and compared with the activity of the same neuron during LF blocks. Stimulation-induced descending inhibition of neuronal responses to noxious skin heating was produced by bipolar focal electrical stimulation in the periaqueductal gray (PAG) or nucleus raphe magnus (NRM) and compared with the inhibition of the same neurons during LF blocks. The relative significance of ipsi- and contralateral pathways in the dorsal, medial, or ventral aspects of the lateral funiculi for these types of descending inhibition are quantitatively described. 2. All 35 lumbar spinal dorsal horn neurons studied responded to noxious and innocuous mechanical and noxious thermal stimuli applied within the receptive fields on the glabrous skin of the hindlimb. Responses to noxious skin stimuli (50 degrees C, 10 s at 3-min intervals) were constant over time and served as a parameter to evaluate tonic and stimulation-produced descending inhibition. All neurons also responded to electrical stimulation of hindlimb cutaneous nerves supramaximal for the activation of A-beta-, delta-, and C-fibers. Neurons were located in laminae I-VI of the dorsal horn at L5-L7 levels. LF blocks were produced by the microinjection of 1 microliter lidocaine at each of one to six sites in the ipsilateral and/or contralateral LF 500, 1,500, and/or 2,500 microns below cord surface. 3. LF blocks ipsilateral to the recording sites in the cord significantly reduced tonic inhibition, with blocks in the dorsal part of the LF [i.e., the dorsolateral funiculus (DLF)] being equally effective to complete LF blocks. Stimulation-produced inhibition from PAG or NRM was, however, not significantly affected by ipsilateral LF blocks. 4. Contralateral LF blocks significantly reduced stimulation-produced descending inhibition and failed to affect tonic descending inhibition. Ventral LF blocks attenuated inhibition from the PAG but not from NRM, whereas DLF blocks were more effective on inhibition from the NRM. 5. Bilateral LF blocks significantly reduced tonic as well as stimulation-produced descending inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document