Na+ and Ca2+ currents of acutely isolated adult rat nodose ganglion cells

1986 ◽  
Vol 55 (3) ◽  
pp. 527-539 ◽  
Author(s):  
S. R. Ikeda ◽  
G. G. Schofield ◽  
F. F. Weight

The electrical properties of nodose ganglion cells acutely isolated from adult rats were studied using the whole-cell patch-clamp recording method. Current-clamp recordings revealed a mean resting membrane potential of -54.3 mV and an input resistance of 527 M omega. Depolarizing current steps evoked action potentials with the following properties (mean): amplitude 111 mV, threshold -36 mV, and rate of rise 117 V/s. Two types of action potentials were observed, short and long duration. These properties, with the exception of input resistance (527 M omega cf. 50 M omega), are similar to those reported previously using intracellular recording methods in intact nodose ganglia (11, 20, 28). Brief application of 10 microM 5-hydroxytryptamine resulted in a rapid depolarization and burst of action potentials in the majority of cells. With voltage-clamp recording, step depolarizations to potentials positive to -10 mV elicited a transient inward current that was followed by a sustained outward current. Inward Na+ current was isolated by ion substitution and pharmacological agents. Two types of Na+ current were observed. One current was completely abolished by 3-15 microM tetrodotoxin (TTX), had a rapid time course, activated over the potential range -60 to -10 mV, and attained half-maximal conductance at -30 mV. The other current persisted in the presence of 15 microM TTX, had a slower time course, activated over the potential range -30 to 0 mV, and attained half-maximal conductance at -15 mV. In addition, 500 microM Cd2+ and 5.0 mM Co2+ reduced the TTX-insensitive current to 53 and 42% of control, respectively. Inward Ca2+ current was isolated by ion substitution and pharmacological agents and was identified by a dependence on external Ca2+. Cd2+ (500 microM) and Co2+ (5 mM) reduced the maximal inward current to 5 and 20% of control, respectively. When Ba2+ was substituted for Ca2+ as the charge carrier, the maximal inward current increased to 175% of control. Some cells had two Ca2+ current components, an inactivating component that activated near -60 mV and a large sustained current that activated near -40 mV. The initial inactivating current appeared as a "hump" on the current-voltage (I-V) curve over the potential range of -60 to -30 mV. The results indicate that, following isolation of these adult mammalian neurons, the membrane surfaces are sufficiently clean to allow patch-clamp recording.(ABSTRACT TRUNCATED AT 400 WORDS)

1989 ◽  
Vol 62 (6) ◽  
pp. 1280-1286 ◽  
Author(s):  
N. Uchimura ◽  
E. Cherubini ◽  
R. A. North

1. Intracellular recordings were made from neurons in slices cut from the rat nucleus accumbens septi. Membrane currents were measured with a single-electrode voltage-clamp amplifier in the potential range -50 to -140 mV. 2. In control conditions (2.5 mM potassium), the resting membrane potential of the neurons was -83.4 +/- 1.1 (SE) mV (n = 157). Steady state membrane conductance was voltage dependent, being 34.8 +/- 1.7 nS (n = 25) at -100 mV and 8.0 +/- 0.7 nS (n = 25) at -60 mV. 3. Barium (1 microM) markedly reduced the inward rectification and caused a small inward current (40.6 +/- 8.7 pA, n = 8) at the resting potential. These effects became larger with higher barium concentrations, and, in 100 microM barium, the current-voltage relation was straight. 4. The block of the inward current by barium (at -130 mV) occurred with an exponential time course; the time constant was approximately 1 s at 1 microM barium and less than 90 ms with 100 microM. Strontium had effects similar to those of barium, but 1000-fold higher concentrations were required. Cesium chloride (2 mM) and rubidium chloride (2 mM) also blocked the inward rectification; their action reached steady state within 50 ms. 5. It is concluded that the nucleus accumbens neurons have a potassium conductance with many features of a typical inward rectifier and that this contributes to the potassium conductance at the resting potential.


1988 ◽  
Vol 255 (5) ◽  
pp. H992-H999 ◽  
Author(s):  
R. Mohabir ◽  
G. R. Ferrier

The inducibility of slow-response automaticity was assessed during ischemic conditions and reperfusion by application of extracellular current. Isolated canine Purkinje fibers were depolarized to membrane potentials less than -65 mV to elicit depolarization-induced automaticity (DIA). Ischemic conditions increased the cycle length of DIA and, in some tissues, prevented sustained DIA or completely abolished DIA. The magnitude of depolarization required to elicit DIA also increased. Inhibition of DIA occurred at a time when action potential plateaus were abbreviated. The effect of reperfusion on DIA was biphasic. Initial reappearance of DIA was followed by inhibition and reduction of the membrane potential range over which DIA could be elicited. Plateaus of action potentials initiated at high membrane potential were abbreviated at this time. DIA returned again as reperfusion effects dissipated. Phasic changes in the inducibility of DIA may represent changes in availability of the slow inward current and may regulate the timing and types of arrhythmic activity occurring with ischemia and reperfusion.


1993 ◽  
Vol 70 (5) ◽  
pp. 1874-1884 ◽  
Author(s):  
K. Morita ◽  
G. David ◽  
J. N. Barrett ◽  
E. F. Barrett

1. The hyperpolarization that follows tetanic stimulation was recorded intra-axonally from the internodal region of intramuscular myelinated motor axons. 2. The peak amplitude of the posttetanic hyperpolarization (PTH) that followed stimulation at 20-100 Hz for < or = 35 s increased with increasing train duration, reaching a maximum of 22 mV. PTH decayed over a time course that increased from tens to hundreds of seconds with increasing train duration. For a given frequency of stimulation the time integral of PTH was proportional to the number of stimuli in the train, averaging 3-4 mV.s per action potential. 3. Ouabain (0.1-1 mM) and cyanide (1 mM) depolarized the resting potential and abolished PTH. Tetanic stimulation in ouabain was followed by a slowly decaying depolarization (probably due to extra-axonal K+ accumulation) whose magnitude and duration increased as the duration of the train increased. 4. Axonal input resistance showed no consistent change during PTH in normal solution but increased during PTH in the presence of 3 mM Cs+ (which blocks axonal inward rectifier currents). 5. PTH was abolished when bath Na+ was replaced by Li+ or choline. PTH persisted after removal of bath Ca2+ and addition of 2 mM Mn2+. 6. Removal of bath K+ abolished the PTH recorded after brief stimulus trains and greatly reduced the duration of PTH recorded after longer stimulus trains. 7. A brief application of 10 mM K+, which normally depolarizes axons, produced a ouabain-sensitive hyperpolarization in axons bathed in K(+)-free solution. 8. These observations suggest that in these myelinated axons PTH is produced mainly by activation of an electrogenic Na(+)-K(+)-ATPase, rather than by changes in K+ permeability or transmembrane [K+] gradients. This conclusion is supported by calculations showing agreement between estimates of Na+ efflux/impulse based on PTH measurements and estimates of Na+ influx/impulse based on nodal voltage-clamp measurements. Pump activity also appears to contribute to the resting potential. 9. The stimulus intensity required to initiate a propagating action potential increased during PTH but decreased during the posttetanic depolarization recorded in ouabain. Thus changes in axonal excitability after tetanic stimulation correlate with changes in the posttetanic membrane potential. 10. Action potentials that propagated during PTH had a larger peak amplitude and were followed by a larger and longer depolarizing afterpotential than action potentials elicited at the resting potential. This enhancement of the depolarizing afterpotential is consistent with previous reports of an increased superexcitable period after action potentials evoked during PTH.


1991 ◽  
Vol 157 (1) ◽  
pp. 101-122
Author(s):  
WERNER A. WUTTKE ◽  
MICHAEL S. BERRY

1. The giant salivary cells of Haementeria ghilianii are known to produce Ca2+-dependent action potentials and to release their secretory products in response to stimulation of the stomatogastric nerve. In this study, the electrophysiological effects of some putative transmitters were examined by perfusion of the gland and two promising candidates were selected for detailed analysis. 2. Acetylcholine (ACh) was the only substance tested which excited the gland cells. It produced a large, Na+-dependent depolarization that elicited 1–3 action potentials and desensitized to about 24% of its maximal value within 2 min. 3. Carbachol, tetramethylammonium and nicotine elicited similar responses to ACh, whereas choline and pilocarpine had negligible effects. 4. The ACh response was completely blocked by d-tubocurarine and strychnine, and was reduced by tetraethylammonium, hexamethonium and atropine. The receptors, therefore, cannot be clearly distinguished as nicotinic or muscarinic. 5. ACh did not elicit secretion, but this does not necessarily preclude it from acting as a neuroglandular transmitter. 6. 5-Hydroxytryptamine (5-HT) was the only transmitter candidate that elicited secretion, though it did not excite the gland cells. 7. 5-HT produced a subthreshold depolarization and an increase in input resistance. Action potentials, elicited by depolarizing pulses, were increased in amplitude and duration, and showed greatly reduced adaptation. 8. 5-HT potentiated the net inward current, evoked by subthreshold depolarizing pulses, by reducing outward K+ current. The inward current, carried by Ca2+, was not directly affected. In addition, 5-HT increased an inwardly rectifying current, carried by Na+ and K+. All the effects of 5-HT tended to increase cell excitability. 9. Salivary cell responses to 5-HT were reversibly antagonised by methysergide. 10. Responses to ACh or 5-HT were not mimicked by 3′, 5′-cyclic guanosine monophosphate, which greatly reduced spike amplitude and excitability. The effects were specific to the 3′, 5′ form; 2′, 3′-cyclic GMP had no effect. Cyclic GMP dramatically reduced the duration of action potentials that had been artificially prolonged by TEA+ or removal of external Ca2+. 11. Cyclic 3′, 5′-adenosine monophosphate and its dibutyryl derivative had little effect on membrane properties. 8-Bromo-cyclic AMP, however, mimicked all the effects of 5-HT. It is thought that 5-HT may exert its actions via cyclic AMP. 12. The possible role of 5-HT in salivary secretion is discussed.


2018 ◽  
Author(s):  
Qiang Liu ◽  
Philip B. Kidd ◽  
May Dobosiewicz ◽  
Cornelia I. Bargmann

SummaryWe find, unexpectedly, that C. elegans neurons can encode information through regenerative all-or-none action potentials. In a survey of current-voltage relationships in C. elegans neurons, we discovered that AWA olfactory neurons generate membrane potential spikes with defining characteristics of action potentials. Ion substitution experiments, pharmacology, and mutant analysis identified a voltage-gated CaV1 calcium channel and a Shaker-type potassium channel that underlie action potential dynamics in AWA. Simultaneous patch-clamp recording and calcium imaging in AWA revealed spike-associated calcium signals that were also observed after odor stimulation of intact animals, suggesting that natural odor stimuli induce AWA action potentials. The stimulus regimes that elicited action potentials match AWA’s proposed specialized function in climbing odor gradients. Our results provide evidence that C. elegans can use digital as well as analog coding schemes, expand the computational repertoire of its nervous system, and inform future modeling of its neural coding and network dynamics.


1988 ◽  
Vol 91 (1) ◽  
pp. 73-106 ◽  
Author(s):  
T Hoshi ◽  
R W Aldrich

Properties of the whole-cell K+ currents and voltage-dependent activation and inactivation properties of single K+ channels in clonal pheochromocytoma (PC-12) cells were studied using the patch-clamp recording technique. Depolarizing pulses elicited slowly inactivating whole-cell K+ currents, which were blocked by external application of tetraethylammonium+, 4-aminopyridine, and quinidine. The amplitudes and time courses of these K+ currents were largely independent of the prepulse voltage. Although pharmacological agents and manipulation of the voltage-clamp pulse protocol failed to reveal any additional separable whole-cell currents in a majority of the cells examined, single-channel recordings showed that, in addition to the large Ca++-dependent K+ channels described previously in many other preparations, PC-12 cells had at least four distinct types of K+ channels activated by depolarization. These four types of K+ channels differed in the open-channel current-voltage relation, time course of activation and inactivation, and voltage dependence of activation and inactivation. These K+ channels were designated the Kw, Kz, Ky, and Kx channels. The typical chord conductances of these channels were 18, 12, 7, and 7 pS in the excised configuration using Na+-free saline solutions. These four types of K+ channels opened in the presence of low concentrations of internal Ca++ (1 nM). Their voltage-dependent gating properties can account for the properties of the whole-cell K+ currents in PC-12 cells.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 730
Author(s):  
Biji Mathew ◽  
Leianne A. Torres ◽  
Lorea Gamboa Gamboa Acha ◽  
Sophie Tran ◽  
Alice Liu ◽  
...  

Cell replacement therapy using mesenchymal (MSC) and other stem cells has been evaluated for diabetic retinopathy and glaucoma. This approach has significant limitations, including few cells integrated, aberrant growth, and surgical complications. Mesenchymal Stem Cell Exosomes/Extracellular Vesicles (MSC EVs), which include exosomes and microvesicles, are an emerging alternative, promoting immunomodulation, repair, and regeneration by mediating MSC’s paracrine effects. For the clinical translation of EV therapy, it is important to determine the cellular destination and time course of EV uptake in the retina following administration. Here, we tested the cellular fate of EVs using in vivo rat retinas, ex vivo retinal explant, and primary retinal cells. Intravitreally administered fluorescent EVs were rapidly cleared from the vitreous. Retinal ganglion cells (RGCs) had maximal EV fluorescence at 14 days post administration, and microglia at 7 days. Both in vivo and in the explant model, most EVs were no deeper than the inner nuclear layer. Retinal astrocytes, microglia, and mixed neurons in vitro endocytosed EVs in a dose-dependent manner. Thus, our results indicate that intravitreal EVs are suited for the treatment of retinal diseases affecting the inner retina. Modification of the EV surface should be considered for maintaining EVs in the vitreous for prolonged delivery.


1985 ◽  
Vol 54 (2) ◽  
pp. 245-260 ◽  
Author(s):  
C. E. Stansfeld ◽  
D. I. Wallis

The active and passive membrane properties of rabbit nodose ganglion cells and their responsiveness to depolarizing agents have been examined in vitro. Neurons with an axonal conduction velocity of less than 3 m/s were classified as C-cells and the remainder as A-cells. Mean axonal conduction velocities of A- and C-cells were 16.4 m/s and 0.99 m/s, respectively. A-cells had action potentials of brief duration (1.16 ms), high rate of rise (385 V/s), an overshoot of 23 mV, and relatively high spike following frequency (SFF). C-cells typically had action potentials with a "humped" configuration (duration 2.51 ms), lower rate of rise (255 V/s), an overshoot of 28.6 mV, an after potential of longer duration than A-cells, and relatively low SFF. Eight of 15 A-cells whose axons conducted at less than 10 m/s had action potentials of longer duration with a humped configuration; these were termed Ah-cells. They formed about 10% of cells whose axons conducted above 2.5 m/s. The soma action potential of A-cells was blocked by tetrodotoxin (TTX), but that of 6/11 C-cells was unaffected by TTX. Typically, A-cells showed strong delayed (outward) rectification on passage of depolarizing current through the soma membrane and time-dependent (inward) rectification on inward current passage. Input resistance was thus highly sensitive to membrane potential close to rest. In C-cells, delayed rectification was not marked, and slight time-dependent rectification occurred in only 3 of 25 cells; I/V curves were normally linear over the range: resting potential to 40 mV more negative. Data on Ah-cells were incomplete, but in our sample of eight cells time-dependent rectification was absent or mild. C-cells had a higher input resistance and a higher neuronal capacitance than A-cells. In a proportion of A-cells, RN was low at resting potential (5 M omega) but increased as the membrane was hyperpolarized by a few millivolts. A-cells were depolarized by GABA but were normally unaffected by 5-HT or DMPP. C-cells were depolarized by GABA in a similar manner to A-cells but also responded strongly to 5-HT; 53/66 gave a depolarizing response, and 3/66, a hyperpolarizing response. Of C-cells, 75% gave a depolarizing response to DMPP.(ABSTRACT TRUNCATED AT 400 WORDS)


2005 ◽  
Vol 94 (6) ◽  
pp. 4430-4440 ◽  
Author(s):  
Sofija Andjelic ◽  
Vincent Torre

Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (Δ F/ F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. Δ F/ F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, Δ F/ F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.


1983 ◽  
Vol 244 (3) ◽  
pp. H341-H350
Author(s):  
C. H. Conrad ◽  
R. G. Mark ◽  
O. H. Bing

We studied the effects of brief periods (20-30 min) of hypoxia in the presence of 5 and 50 mM glucose and of glycolytic blockade (10(-4) M iodoacetic acid, IAA) on action potentials, membrane currents, and mechanical activity in rat ventricular papillary muscles using a single sucrose gap voltage-clamp technique. Steady-state outward current (iss) was determined at the end of a 500-ms clamp to the test potential following a 600-ms clamp to a holding potential of -50 mV. In the presence of 5 mM glucose, hypoxia resulted in a decrease in action potential duration (APD) and an increase in iss (on the order of 60% at 0 mV) over the potential range studied. The increase in iss did not appear to be due to an increase in leakage current or to a change in the cable properties of the preparation. Addition of 50 mM glucose prevented the change in both APD and iss with hypoxia. In addition, glycolytic blockade with IAA did not alter iss in the presence of oxygen. We conclude that an increase in iss appears to be a major factor in the abbreviation of rat ventricular action potential seen with hypoxia. Glycolysis appears to be a sufficient (with 50 mM glucose) but not necessary source of energy for the maintenance of normal iss.


Sign in / Sign up

Export Citation Format

Share Document