Whole-cell patch-clamp analysis of voltage-dependent calcium conductances in cultured embryonic rat hippocampal neurons

1989 ◽  
Vol 61 (3) ◽  
pp. 467-477 ◽  
Author(s):  
D. E. Meyers ◽  
J. L. Barker

1. Voltage-dependent calcium currents in embryonic (E18) hippocampal neurons cultured for 1-14 days were investigated using the whole-cell patch-clamp technique. 2. Calcium currents were isolated by removing K+ from both the internal and external solutions. In most recordings the external solution contained tetrodotoxin, tetraethylammonium ions, and low concentrations of Na+, whereas the internal solution contained the large cations and anions, N-methyl-D-glucamine and methanesulphonate, and an adenosine 5'-triphosphate (ATP) regenerating system (Forscher and Oxford, 1985) to retard “run-down” of Ca currents. 3. Under these conditions, the sustained inward current triggered during depolarizing steps was enhanced when extracellular [Ca2+] ([Ca2+]0) was raised from 2 to 10 mM and abolished when [Ca2+]0 was lowered to 0.1 mM or by addition of Co2+ ions. These results indicate that the inward current was carried primarily by Ca2+ ions and was designated ICa. This current may be comparable to the “high-voltage-activated” Ca current described in other preparations. 4. In cells cultured for 1-3 days, ICa was small or absent (less than 20 pA for cells 1 day in culture and less than 80 pA for cells 3 days in culture). Although ICa decayed considerably during depolarizing steps, there was little evidence of the transient calcium current (T current) that was recorded in approximately 40% of cells cultured longer than 6 days. Maximal (i.e., the largest) ICa increased from 20 to 80 pA in 1- to 3-day cells to 150–450 pA in cells cultured for longer than 6 days. 5. The decay of ICa elicited by depolarizations from holding potentials of -60 mV or more negative was usually greatest for the maximal ICa. Replacement of extracellular Ca2+ (4 mM) with Ba2+ (2 mM) resulted in a substantial decrease in the extent of decay of ICa and a shift of the I-V relation in the hyperpolarizing direction. 6. Qualitative data obtained from experiments in which different levels of internal Ca2+ buffering were employed demonstrated that, on average, the decay of ICa was reduced as the capacity and/or rate of buffering was increased. The mean decay of ICa in cells buffered with 5 mM 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) was 9 +/- 7 (SD) %, (n = 12) and 25 +/- 12%, (n = 12) for cells buffered with the same concentration of ethyleneglycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA).(ABSTRACT TRUNCATED AT 400 WORDS)

1993 ◽  
Vol 102 (5) ◽  
pp. 859-869 ◽  
Author(s):  
N B Datyner ◽  
I S Cohen

We have examined slow inactivation of L-type calcium current in canine Purkinje myocytes with the whole cell patch clamp technique. Slow inactivation is voltage dependent. It is negligible at -50 mV but can inactivate more than half of available iCaL at -10 mV. There are two major consequences of this slow inactivation. First, standard protocols for the measurement of T-type current can dramatically overestimate its contribution to total calcium current, and second, the position and steepness of the inactivation versus voltage curve for iCaL will depend on the method of measurement. Given the widespread attempts to identify calcium current components and characterize them biophysically, an important first step should be to determine the extent of slow inactivation of calcium current in each preparation.


1990 ◽  
Vol 63 (6) ◽  
pp. 1499-1507 ◽  
Author(s):  
J. W. Wiley ◽  
R. A. Gross ◽  
Y. X. Lu ◽  
R. L. Macdonald

1. The effect of neuropeptide Y (NPY) on voltage-dependent calcium currents was studied in acutely dissociated rat vagal afferent (nodose) neurons by the use of both intracellular single-electrode and whole-cell patch-clamp techniques. 2. Nodose neurons exhibited three calcium current components similar to the transient low-threshold (T), slowly inactivating high-threshold (L), and the transient high-threshold (N) currents previously described in dorsal root ganglion neurons (Nowycky et al. 1985). The characteristics of calcium current components were similar for the two recording techniques except that the inactivation time constants (tau i) were two- to threefold larger at 22 degrees C (whole-cell patch clamp) than at 35 degrees C (single-electrode voltage clamp). 3. NPY (0.1-100 nM, ED50 4 nM) produced a concentration-dependent reduction in calcium currents with the use of both recording techniques. NPY (100 nM) had no effect on T and L currents but reduced the combined N/L current 31 +/- 6% in 47% of the cells tested. Current traces were also analyzed by multiexponential curve fitting to determine amplitudes and inactivation time constants (tau i). NPY selectively reduced the amplitude of the curve-fitted N current component 45 +/- 8% but had no effect on any of the tau i. The effect of NPY to reduce calcium current was blocked in the presence of gadolinium (1 microM), a putative N channel antagonist. Pretreatment of cultures with pertussis toxin (PTX) (100 ng/ml) for 16-24 h blocked the effect of NPY. 4. NPY reduced the peak current without changing the voltage dependence of the peak current-voltage relation.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 82 (1) ◽  
pp. 508-511 ◽  
Author(s):  
Katrin Bittner ◽  
Wolfgang Müller

Membrane-permeable arachidonic acid (AA) is liberated in a Ca2+-dependent way inside cells. By using whole cell patch clamp we show that intracellular AA (1 pM) selectively reduces I A in rat hippocampal neurons, whereas extracellular application requires a 106-fold concentration. The nonmetabolized AA analogue ETYA mimics the effect of AA that is blocked by ascorbic acid or intracellular glutathione, suggesting an intracellular oxidative mechanism. We conclude that intracellular AA is extremely potent in reducing I A by an oxidative mechanism, particularly during oxidative stress.


1996 ◽  
Vol 270 (4) ◽  
pp. L577-L586 ◽  
Author(s):  
S. Liu ◽  
A. J. Mautone

Patch-clamp studies were performed on fetal rat alveolar type II cells isolated at 19 days of gestation and cultured on either plastic for 7 days or Matrigel matrix (40-50 microliters/cm2) for 10 days. Before study, cells cultured on Matrigel matrix were dissociated from alveolar-like structures with enzymes, replated, and washed with cold buffer at a constant flow rate to remove residual gel. This wash significantly improved obtaining of successful seals. Potassium current-voltage relationships and maximum whole cell K+ conductance (normalized to membrane capacitance) were significantly changed with time in cells cultured on plastic, but no significant change occurred in cells cultured on Matrigel matrix. Application of 20 mM tetraet hyl ammonium, 2mM 4-aminopyridine, and 5mM BaCl2 significantly inhibited K+ currents, showing differences in channel sensitivity to these agents and a voltage-dependent blockage between culture groups or with time in culture. To conclude, we have developed a new method by which epithelial cells cultured on Matrigel matrix can be successfully studied with the use of patch-clamp techniques. Furthermore, these studies show that fetal type II cells have voltage-activated K+ channels and that channel density and their sensitivity to channel blockers are modulated by the substratum on which the cells are cultured.


2007 ◽  
Vol 107 (4) ◽  
pp. 641-651 ◽  
Author(s):  
Cristina Arias ◽  
Miriam Guizy ◽  
Miren David ◽  
Stefanie Marzian ◽  
Teresa González ◽  
...  

Background Kvbeta1.3 subunit modifies the gating and the pharmacology of Kv1.5 channels, decreasing their sensitivity to block induced by drugs, suggesting that Kvbeta1.3 competes with them for a binding site at Kv1.5 channels. Methods Currents generated by the activation of Kv1.5 and Kv1.5 + Kvbeta1.3 channels expressed in HEK293 cells and Xenopus oocytes were recorded by using whole cell patch clamp and voltage clamp techniques. Results Block of Kv1.5, but not that produced on Kv1.5 + Kvbeta1.3 channels, was voltage dependent. In both channels, bupivacaine block was time dependent. R(+)- and S(-)-bupivacaine blocked Kv1.5 with IC50 4.4 +/- 0.5 microM (n = 15) and 39.8 +/- 8.2 microM (n = 16; P < 0.05), respectively. These values increased fourfold for R(+)-bupivacaine (17.2 +/- 2.2 microM) and twofold for S(-)-bupivacaine (71.9 +/- 11.5 microM) in Kv1.5 + Kvbeta1.3 channels. Therefore, the degree of stereoselectivity (theta) decreased from 9 to 4 in the presence of Kvbeta1.3. The decrease in potency to block Kv1.5 + Kvbeta1.3 channels was the result of a less stable interaction between bupivacaine enantiomers and channels. Differences in stereoselectivity in each situation were due to a more favorable interaction between the channel and R(+)-bupivacaine. In the presence of Kvbeta1.3, stereoselectivity was abolished for V514A mutant channels (involved in bupivacaine binding but not in Kvbeta1.3 binding) but not for L510A (part of Kvbeta1.3 binding site). Conclusions The degree of stereoselective block of Kv1.5 decreases from 9 to 4 when Kvbeta1.3 is present. L510 is determinant for the modulation of bupivacaine block, because it is the only residue of the S6 segment that binds to both bupivacaine and Kvbeta1.3. These findings support an overlapping binding site for drugs and Kvbeta1.3.


2000 ◽  
Vol 278 (1) ◽  
pp. H295-H299 ◽  
Author(s):  
Hong Shi ◽  
Hui-Zhen Wang ◽  
Zhiguo Wang

Ba2+ is widely used as a tool in patch-clamp studies because of its ability to block a variety of K+channels and to pass Ca2+ channels. Its potential ability to block the cardiac transient outward K+ current ( I to) has not been clearly documented. We performed whole cell patch-clamp studies in canine ventricular and atrial myocytes. Extracellular application of Ba2+ produced potent inhibition of I to with an IC50 of ∼40 μM. The effects were voltage independent, and the inactivation kinetics were not altered by Ba2+. The potency of Ba2+ was ∼10 times higher than that of 4-aminopyridine (a selective I to blocker with an IC50 of 430 μM) under identical conditions. By comparison, Ba2+blockade of the inward rectifier K+ current was voltage dependent; the IC50 was ∼20 times lower (2.5 μM) than that for I to when determined at −100 mV and was comparable to I to as determined at −60 mV (IC50 = 26 μM). Ba2+ concentrations of ≤1 mM or higher failed to block ultrarapid delayed rectifier K+ current. Our data suggest that Ba2+ can be considered a potent blocker of I to.


Sign in / Sign up

Export Citation Format

Share Document