Eye movements elicited by electrical stimulation of area PG in the monkey

1991 ◽  
Vol 65 (6) ◽  
pp. 1243-1253 ◽  
Author(s):  
D. D. Kurylo ◽  
A. A. Skavenski

1. Eye positions of monkeys were tracked while low-current electrical stimulation was delivered to area PG of the posterior parietal cortex. Stimulation was delivered while monkeys were in darkness, while they were in a dimly illuminated room, or while they actively fixated on small lamps to receive a liquid reward. 2. Resulting eye movements fell into one of three categories, depending roughly on the area stimulated. Stimulation of caudal regions generally resulted in saccades that were of approximately equivalent amplitudes and directions. When more rostral areas were stimulated, saccades were generally produced that directed the eyes toward roughly the same position in the head. Distributed throughout all regions were sites for which elicited saccades did not fall clearly into either of these coordinate bases. Stimulation of lateral areas produced low-velocity eye movements that were directed ipsilaterally from the stimulated hemisphere. 3. Stimulation made while monkeys fixated on target lamps produced saccades with more variability and less amplitude than those produced while monkeys were in darkness. Low-velocity eye movements could only be elicited while monkeys were in darkness. 4. Craniocentric saccades typically brought the eyes to within a 10-20 degrees area, and saccades could not be produced when the initial eye position was near this area. Craniocentric saccades were always greater than 5 degrees in amplitude. 5. It is concluded that area PG is organized into at least two zones that differ in the way by which they code saccades. A caudal region codes saccades in a way similar to that found in the frontal cortex and superior colliculus of primates. A rostral region codes saccades in a craniocentric manner, although it is restricted only to gross redirection of gaze without the accuracy monkeys are capable of using in directing their eyes.

Brain ◽  
2014 ◽  
Vol 138 (2) ◽  
pp. 428-439 ◽  
Author(s):  
Nadia Bolognini ◽  
Silvia Convento ◽  
Elisabetta Banco ◽  
Flavia Mattioli ◽  
Luigi Tesio ◽  
...  

2019 ◽  
Vol 122 (4) ◽  
pp. 1765-1776 ◽  
Author(s):  
Maryam Ghahremani ◽  
Kevin D. Johnston ◽  
Liya Ma ◽  
Lauren K. Hayrynen ◽  
Stefan Everling

The common marmoset ( Callithrix jacchus) is a small-bodied New World primate increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here we addressed this gap by probing the function of posterior parietal cortex of the common marmoset with electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eyeblinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as a valuable model for neurophysiological investigations of oculomotor and cognitive control. NEW & NOTEWORTHY The macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited, as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.


Sign in / Sign up

Export Citation Format

Share Document