Oscillatory discharge in the visual system: does it have a functional role?

1992 ◽  
Vol 68 (5) ◽  
pp. 1558-1574 ◽  
Author(s):  
G. M. Ghose ◽  
R. D. Freeman

1. The discharge of individual neurons in the visual cortex and lateral geniculate nucleus (LGN) of anesthetized and paralyzed cats and kittens was examined for the presence of oscillatory activity. Neural firing was evoked through the monoptic or dichoptic presentation of drifting gratings and random sequences of flashed bars. The degree to which different oscillatory frequencies were present in neural discharge was quantified by computation of the power spectra of impulse train responses. 2. Action potentials from single cells were recorded extracellularly and isolated on the basis of amplitude. Receptive-field properties of the neurons under study were characterized initially by their discharge in response to gratings of sinusoidal luminance. By varying orientation and spatial frequency, optimal stimulus characteristics were determined. Oscillation analysis was performed on spike trains acquired during repeated presentations of the optimal stimulus by identification of power spectra peaks in the frequency range of rhythmic potentials observed in electroencephalograph studies (30-80 Hz). The amplitude and frequency of the largest peak in this range was used to characterize oscillatory strength and frequency. All discharge in which the peak amplitude exceeded the high-frequency noise by a factor > 1.5 was classified as oscillatory. 3. Of the 342 cortical cells examined, 147 cells displayed oscillatory activity in the 30 to 80-Hz range during portions of their visual response. Sixty out of 169 simple cells, 82 out of 166 complex cells, and 5 out of 7 special complex cells exhibited oscillations. There was no laminar bias in the distribution of oscillatory cells; the proportions of oscillatory cells were similar in all layers. All oscillatory discharge was variable with respect to frequency and strength between successive presentations of the same optimal stimulus. In as little as 10 s, for example, peak frequencies shifted by a factor of two. For many cells, these trial-to-trial variations obscured detectable oscillations when all trials were averaged together. 4. The potential role of neuronal maturation in the generation of oscillatory activity was investigated by studying neuronal responses from kittens at 4 wk postnatal. Of the 80 kitten cells studied, 27 exhibited oscillatory discharge. Although oscillations in the kitten visual cortex spanned the same frequency range as that seen in the adult, oscillations in the midfrequency range (36-44 Hz) are more common in the adult cortex. 5. To explore the possibility that oscillations might play a functional role in vision, we investigated the dependence of oscillations on different stimulus parameters.(ABSTRACT TRUNCATED AT 400 WORDS)

1997 ◽  
Vol 14 (6) ◽  
pp. 963R-979R ◽  
Author(s):  
Geoffrey M. Ghose ◽  
Ralph D. Freeman

Abstractarises from the integration of signals from strongly oscillatory cells within the LGN. The model also predicts the incidence of 50-Hz oscillatory cells within the cortex. Oscillatory discharge around 30 Hz is explained in a second model by the presence of intrinsically oscillatory cells within cortical layer 5. Both models generate spike trains whose power spectra and mean firing rates are in close agreement with experimental observations of simple and complex cells. Considered together, the two models can largely account for the nature and incidence of oscillatory discharge in the cat's visual cortex. The validity of these models is consistent with the possibility that oscillations are generated independently of intracortical interactions. Because these models rely on intrinsic stimulus-independent oscillators within the retina and cortex, the results further suggest that oscillatory activity within the cortex is not necessarily associated with the processing of high-order visual information.


1997 ◽  
Vol 14 (5) ◽  
pp. 963-979 ◽  
Author(s):  
Geoffrey M. Ghose ◽  
Ralph D. Freeman

AbstractSynchronized oscillatory discharge in the visual cortex has been proposed to underlie the linking of retinotopically disparate features into perceptually coherent objects. These proposals have largely relied on the premise that the oscillations arise from intracortical circuitry. However, strong oscillations within both the retina and the lateral geniculate nucleus (LGN) have been reported recently. To evaluate the possibility that cortical oscillations arise from peripheral pathways, we have developed two plausible models of single cell oscillatory discharge that specifically exclude intracortical networks. In the first model, cortical oscillatory discharge near 50 Hz in frequency arises from the integration of signals from strongly oscillatory cells within the LGN. The model also predicts the incidence of 50-Hz oscillatory cells within the cortex. Oscillatory discharge around 30 Hz is explained in a second model by the presence of intrinsically oscillatory cells within cortical layer 5. Both models generate spike trains whose power spectra and mean firing rates are in close agreement with experimental observations of simple and complex cells. Considered together, the two models can largely account for the nature and incidence of oscillatory discharge in the cat's visual cortex. The validity of these models is consistent with the possibility that oscillations are generated independently of intracortical interactions. Because these models rely on intrinsic stimulus-independent oscillators within the retina and cortex, the results further suggest that oscillatory activity within the cortex is not necessarily associated with the processing of high-order visual information.


2000 ◽  
Vol 622 ◽  
Author(s):  
C. F. Zhu ◽  
W. K. Fong ◽  
B. H. Leung ◽  
C. C. Cheng ◽  
C. Surya

ABSTRACTLow-frequency noise is investigated in n-type GaN film grown by rf-plasma assisted molecular beam epitaxy. The temperature dependence of the voltage noise power spectra, SV(f), was examined from 400K to 80K in the frequency range between 30Hz and 100KHz, which can be modeled as the superposition of 1/f (flicker) noise G-R noise. At f > 500 Hz the noise is dominated by G-R noise with activation energies of 360meV and 65meV from the conduct band. The results clearly demonstrate the trap origin for both the 1/f noise and G-R noise. At the low-frequency range the fluctuation was dominated by 1/f noise. To determine the origin of the noise we considered both the bulk mobility fluctuation and the trap fluctuation models. Our experimental results showed that rapid thermal annealing (RTA) at 800°C resulted in over one order of magnitude decrease in the Hooge parameter. Annealing at temperatures in excess of 1000°C resulted in significant increase in the noise. Photoluminescence and x-ray diffraction measurements also showed that the crystallinity of the films improved with RTA at 800°C with an accompanying reduction in deep levels. Annealing at 900°C and 1000°C resulted in an increase in the FWHM of the x-ray diffraction indicative of thermal decomposition of the materials. The results are in excellent agreement with the trend of Hooge parameters as a function of annealing temperature, strongly indicating trap origin of the observed 1/f noise.


1997 ◽  
Vol 77 (6) ◽  
pp. 2879-2909 ◽  
Author(s):  
Izumi Ohzawa ◽  
Gregory C. Deangelis ◽  
Ralph D. Freeman

Ohzawa, Izumi, Gregory C. DeAngelis, and Ralph D. Freeman. Encoding of binocular disparity by complex cells in the cat's visual cortex. J. Neurophysiol. 77: 2879–2909, 1997. To examine the roles that complex cells play in stereopsis, we have recorded extracellularly from isolated single neurons in the striate cortex of anesthetized paralyzed cats. We measured binocular responses of complex cells using a comprehensive stimulus set that encompasses all possible combinations of positions over the receptive fields for the two eyes. For a given position combination, stimulus contrast could be the same for the two eyes (2 bright or 2 dark bars) or opposite (1 bright and 1 dark). These measurements provide a binocular receptive field (RF) profile that completely characterizes complex cell responses in a joint domain of left and right stimulus positions. Complex cells typically exhibit a strong selectivity for binocular disparity, but are only broadly selective for stimulus position. For most cells, selectivity for disparity is more than twice as narrow as that for position. These characteristics are highly desirable if we assume that a disparity sensor should exhibit position invariance while encoding small changes in stimulus depth. Complex cells have nearly identical binocular RFs for bright and dark stimuli as long as the sign of stimulus contrast is the same for the two eyes. When stimulus contrast is opposite, the binocular RF also is inverted such that excitatory subregions become suppressive. We have developed a disparity energy model that accounts for the behavior of disparity-sensitive complex cells. This is a hierarchical model that incorporates specific constraints on the selection of simple cells from which a complex cell receives input. Experimental data are used to examine quantitatively predictions of the model. Responses of complex cells generally agree well with predictions of the disparity energy model. However, various types of deviations from the predictions also are found, including a highly elongated excitatory region beyond that supported by a single energy mechanism. Complex cells in the visual cortex appear to provide a next level of abstraction in encoding information for stereopsis based on the activity of a group of simple-type subunits. In addition to exhibiting narrow disparity tuning and position invariance, these cells seem to provide a partial solution to the stereo correspondence problem that arises in complex natural scenes. Based on their binocular response properties, these cells provide a substantial reduction in the complexity of the correspondence problem.


1994 ◽  
Vol 72 (3) ◽  
pp. 1220-1226 ◽  
Author(s):  
D. Czepita ◽  
S. N. Reid ◽  
N. W. Daw

1. Cats were reared in the dark to 3, 5, and 11 mo. We studied the N-methyl-D-aspartate (NMDA) receptor contribution to the visual response in the cortex, defined as the percentage reduction in visual response after application of 2-amino-5-phosphonovaleric acid (APV). We also studied the firing rate in response to the optimal visual stimulus and the spontaneous activity. We made comparisons of all these properties between light-reared and dark-reared animals. 2. The NMDA receptor contribution to the visual response in layers IV, V, and VI of dark-reared animals was substantially above that in light-reared animals at all ages tested. 3. The specificity of receptive field properties in dark-reared animals showed some degeneration between 6 wk and 3 mo of age. At > or = 3 mo, almost no cells were specific for orientation and direction of movement. 4. Firing rate was lower in dark-reared animals at all ages, suggesting a decrease in excitatory drive to the visual cortex. 5. Spontaneous activity was equal in dark- and light-reared animals, suggesting that the overall level of activity (including visual responses as well as spontaneous activity) in light-reared animals is higher than in dark-reared animals. This should tend to upregulate glutamate receptors in general in dark-reared animals.


2000 ◽  
Vol 84 (4) ◽  
pp. 1863-1868 ◽  
Author(s):  
Kyle L. Kirkland ◽  
Adam M. Sillito ◽  
Helen E. Jones ◽  
David C. West ◽  
George L. Gerstein

We have previously developed a model of the corticogeniculate system to explore cortically induced synchronization of lateral geniculate nucleus (LGN) neurons. Our model was based on the experiments of Sillito et al. Recently Brody discovered that the LGN events found by Sillito et al. correlate over a much longer period of time than expected from the stimulus-driven responses and proposed a cortically induced slow covariation in LGN cell membrane potentials to account for this phenomenon. We have examined the data from our model, and we found, to our surprise, that the model shows the same long-term correlation. The model's behavior was the result of a previously unsuspected oscillatory effect, not a slow covariation. The oscillations were in the same frequency range as the well-known spindle oscillations of the thalamocortical system. In the model, the strength of feedback inhibition from the cortex and the presence of low-threshold calcium channels in LGN cells were important. We also found that by making the oscillations more pronounced, we could get a better fit to the experimental data.


2020 ◽  
Author(s):  
Nardin Nakhla ◽  
Yavar Korkian ◽  
Matthew R. Krause ◽  
Christopher C. Pack

AbstractThe processing of visual motion is carried out by dedicated pathways in the primate brain. These pathways originate with populations of direction-selective neurons in the primary visual cortex, which project to dorsal structures like the middle temporal (MT) and medial superior temporal (MST) areas. Anatomical and imaging studies have suggested that area V3A might also be specialized for motion processing, but there have been very few studies of single-neuron direction selectivity in this area. We have therefore performed electrophysiological recordings from V3A neurons in two macaque monkeys (one male and one female) and measured responses to a large battery of motion stimuli that includes translation motion, as well as more complex optic flow patterns. For comparison, we simultaneously recorded the responses of MT neurons to the same stimuli. Surprisingly, we find that overall levels of direction selectivity are similar in V3A and MT and moreover that the population of V3A neurons exhibits somewhat greater selectivity for optic flow patterns. These results suggest that V3A should be considered as part of the motion processing machinery of the visual cortex, in both human and non-human primates.Significance statementAlthough area V3A is frequently the target of anatomy and imaging studies, little is known about its functional role in processing visual stimuli. Its contribution to motion processing has been particularly unclear, with different studies yielding different conclusions. We report a detailed study of direction selectivity in V3A. Our results show that single V3A neurons are, on average, as capable of representing motion direction as are neurons in well-known structures like MT. Moreover, we identify a possible specialization for V3A neurons in representing complex optic flow, which has previously been thought to emerge in higher-order brain regions. Thus it appears that V3A is well-suited to a functional role in motion processing.


2020 ◽  
Vol 9 (1) ◽  
pp. 1510-1513

The electrical activity of the brain recorded by EEG which used to detect different types of diseases and disorders of the human brain. There is contained a large amount of random noise present during EEG recording, such as artifacts and baseline changes. These noises affect the low -frequency range of the EEG signal. These artifacts hiding some valuable information during analyzing of the EEG signal. In this paper we used the FIR filter for removing low -frequency noise(<1Hz) from the EEG signal. The performance is measured by calculating the SNR and the RMSE. We obtained RMSE average value from the test is 0.08 and the SNR value at frequency(<1Hz) is 0.0190.


2020 ◽  
Vol 11 (2) ◽  
pp. 155-162
Author(s):  
A. F. Sabitov ◽  
I. A. Safina

The spectral method for establishing dynamic response of measuring instruments basically requires determining the amplitude spectrum of the signal in its informative part that includes the amplitude spectrum at zero frequency. The operating frequency range of existing low-frequency spectrum analyzers is above zero frequency that leads to an uncertainty in dynamic response of measuring instruments determined by the spectral method. The purpose of this paper is to develop a program for calculating the signal amplitude spectrum, starting from zero frequency, to implement a spectral method for determining the dynamic response of measuring instruments on computers equipped with the MatLab package.To implement the spectral method for determining the dynamic response of measuring instruments, we developed a program in the MatLab 2013b environment that determines the signal amplitude spectrum from zero Hertz. The program reads the source data from Excel tables and presents the calculated amplitude spectrum as a chart and a report table.It is shown that the developed program calculates the signal amplitude spectrum with a standard deviation of not more than 3.4 % in the frequency range of 0 to 10 rad/s. The calculated amplitude spectrum allows determining the time constant of first-order aperiodic measuring instruments with an uncertainty of not more than 0.166 % at any noise level, if their frequencies are outside the information part of the spectrum.We demonstrated the claimed advantage of the spectral method for determining dynamic response using the developed program by the example of a high-frequency noise in the transient response of some measuring instruments.


Sign in / Sign up

Export Citation Format

Share Document