Excitation of lumbar motoneurons by the medial longitudinal fasciculus in the in vitro brain stem spinal cord preparation of the neonatal rat

1993 ◽  
Vol 70 (6) ◽  
pp. 2241-2250 ◽  
Author(s):  
M. K. Floeter ◽  
A. Lev-Tov

1. The excitation of lumbar motoneurons by reticulospinal axons traveling in the medial longitudinal fasciculus (MLF) was investigated in the newborn rat using intracellular recordings from lumbar motoneurons in an in vitro preparation of the brain stem and spinal cord. The tracer DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine) was introduced into the MLF of 6-day-old littermate rats that had been fixed with paraformaldehyde to evaluate the anatomic extent of this developing pathway. 2. Fibers labeled from the MLF by DiI were present in the cervical ventral and lateral white matter and a smaller number of labeled fibers extended to the lumbar enlargement. Patches of sparse terminal labeling were seen in the lumbar ventral gray. 3. In the in vitro preparation of the brain stem and spinal cord, MLF stimulation excited motoneurons through long-latency pathways in most motoneurons and through both short-(< 40 ms) and long-latency connections in 16 of 40 motoneurons studied. Short- and longer-latency components of the excitatory response were evaluated using mephenesin to reduce activity in polysynaptic pathways. 4. Paired-pulse stimulation of the MLF revealed a modest temporal facilitation of the short-latency excitatory postsynaptic potential (EPSP) at short interstimulus intervals (20–200 ms). Trains of stimulation at longer interstimulus intervals (1–30 s) resulted in a depression of EPSP amplitude. The time course of the synaptic depression was compared with that found in EPSPs resulting from paired-pulse stimulation of the dorsal root and found to be comparable. 5. The short-latency MLF EPSP was reversibly blocked by 6-cyano-7-nitroquinoxaline (CNQX), an antagonist of non-N-methyl-D-aspartate glutamate receptors, with a small CNQX-resistant component. Longer-latency components of the MLF EPSP were also blocked by CNQX, and some late components of the PSP were sensitive to strychnine. MLF activation of multiple polysynaptic pathways in the spinal cord is discussed.

1994 ◽  
Vol 266 (3) ◽  
pp. R658-R667 ◽  
Author(s):  
K. Sugaya ◽  
W. C. De Groat

An in vitro neonatal (1-7 day) rat brain stem-spinal cord-bladder (BSB) preparation was used to examine the central control of micturition. Isovolumetric bladder contractions occurred spontaneously or were induced by electrical stimulation of the ventrolateral brain stem, spinal cord, bladder wall (ES-BW), or by perineal tactile stimulation (PS). Transection of the spinal cord at the L1 segment increased the amplitude of ES-BW- and PS-evoked contractions, and subsequent removal of the spinal cord further increased spontaneous and ES-BW-evoked contractions but abolished PS-evoked contractions. Hexamethonium (1 mM), a ganglionic blocking agent, mimicked the effect of cord extirpation. Tetrodotoxin (1 microM) blocked ES-BW- and PS-evoked contractions but enhanced spontaneous contractions. Bicuculline methiodide (10-50 microM), a gamma-aminobutyric acid A receptor antagonist, increased the amplitude of spontaneous, ES-BW- and PS-evoked contractions. These results indicate that PS-evoked contractions are mediated by spinal reflex pathways, whereas spontaneous and ES-BW-evoked contractions that are elicited by peripheral mechanisms are subject to a tonic inhibition dependent on an efferent outflow from the spinal cord. PS-evoked micturition is also subject to inhibitory modulation arising from sites rostral to the lumbosacral spinal cord. Although electrical stimulation of bulbospinal excitatory pathways can initiate bladder contractions in the neonatal rat, these pathways do not appear to have an important role in controlling micturition during the first postnatal week.


1994 ◽  
Vol 72 (5) ◽  
pp. 2406-2419 ◽  
Author(s):  
M. Pinco ◽  
A. Lev-Tov

1. We studied the projections of ventrolateral funiculus (VLF) axons to lumbar motoneurons in the in vitro spinal cord preparation of 1- to 6-day-old rats using extracellular and sharp-electrode intracellular recordings. 2. Ipsilateral and contralateral VLF projections to lumbar motoneurons (L4-L5) could be activated in the neonatal rat by stimulation of the surgically peeled VLF at the rostral (L1-L2) and caudal lumbar (L6) cord. Motoneurons were activated ipsilaterally through short- and long-latency projections in all cases and contralaterally through long-latency projections in most cases. 3. Suppression of the excitatory components of VLF postsynaptic potentials (PSPs) by application of the specific antagonists of N-methyl D-aspartate (NMDA) and non-NMDA receptors, 2-amino-5-phosphonovaleric acid (APV) and 6-cyano-7-nitroquin-oxaline-2,3-dione (CNQX), revealed depolarizing PSPs that could be reversed at -55 to -60 mV by injection of depolarizing current steps to the motoneurons. These depolarizing PSPs were blocked by addition of strychnine and bicuculline and are therefore suggested to be glycine and gamma-aminobutyric acid-A (GABAA) receptor-mediated inhibitory PSPs. The identity of a small (< or = 0.2 mV) residual depolarizing component that persisted in the presence of APV, CNQX, strychnine, and bicuculline remains to be determined. 4. Short-latency excitatory PSPs (EPSPs) could be resolved from the ipsilaterally elicited VLF PSPs after the reduction of the polysynaptic activity in the preparation by administration of mephenesin, which was followed by suppression of the glycine and GABAA receptor-mediated components of the PSPs by bath application of strychnine and bicuculline. The latencies of these EPSPs were similar to those of the monosynaptic dorsal root afferent EPSPs recorded from the same motoneurons. These short-latency VLF EPSPs were shortened by the NMDA antagonist APV and revealed an NMDA receptor-mediated component after administration of the non-NMDA receptor antagonist CNQX. Addition of the GABAB receptor agonist L-(-) baclofen or the glutamate analogue L-2-amino-4-phosphonobutyric acid (L-AP4) attenuated the pharmacologically resolved short-latency EPSPs.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 65 (5) ◽  
pp. 1227-1241 ◽  
Author(s):  
I. Nose ◽  
H. Higashi ◽  
H. Inokuchi ◽  
S. Nishi

1. To investigate postsynaptic potentials (PSPs), we made intracellular recordings from neurons of the amygdaloid central nucleus in slices from the guinea pig and rat brains maintained in vitro. The results from guinea pigs and rats were very similar. 2. In the presence of bicuculline (20 microM), focal electrical stimulation of the amygdaloid basal nucleus with low intensities elicited short-latency excitatory PSPs (EPSPs) followed by long-latency EPSPs. The short-latency EPSP was selectively blocked by 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX; 10-20 microM). The long-latency EPSP was preferentially abolished by D,L-2-amino-5-phosphonovaleric acid (D,L-APV; 40 microM) and was augmented by removal of extracellular Mg2+. The compound EPSP reversed at -4 mV, which was close to -1 mV, the reversal potential for pressure-ejected glutamate (Glu). 3. When the intensity of the focal stimulation was increased in the presence of bicuculline (20 microM), CNQX (20 microM), and D,L-APV (50 microM), a second EPSP with a short latency and a prolonged duration could be evoked in approximately 65% of the neurons. The EPSPs were reversibly blocked by d-tubocurarine (50 microM) or hexamethonium (200 microM) but were unaffected by atropine (1 microM) or a 5-hydroxytryptamine type 3 receptor antagonist, ICS-205930 (5-10 microM). In these neurons, acetylcholine (ACh; 1-3 mM) caused a depolarization, associated with a decreased input resistance. 4. In the presence of CNQX (20 microM) and D,L-APV (50 microM), single focal stimulation of the dorsolateral subdivision in the central nucleus with low intensities elicited a depolarizing inhibitory PSP (IPSP). The IPSP was reversibly abolished by bicuculline (20-40 microM). The reversal potential (-63 mV) for the IPSP was similar to the reversal potential (-61 mV) for the response to gamma-aminobutyric acid (GABA) applied by pressure ejection. 5. In the presence of bicuculline (20-40 microM) and CNQX (20 microM), a repetitive focal stimulus with high intensities delivered to the dorsolateral subdivision produced a hyperpolarizing PSP followed by a slow depolarization in most neurons. Of putative inhibitory amino acid transmitters, glycine (Gly; 3 mM) produced only a hyperpolarization, associated with a decrease in input resistance. Strychnine (1-2 microM) reversibly blocked both the Gly hyperpolarization and the synaptically evoked hyperpolarization. The reversal potential of -81 mV for the hyperpolarizing PSP was close to -82 mV for the Gly hyperpolarization. The reversal potential for the Gly response was shifted to less negative values by increasing the external K+ concentration or decreasing the extracellular Cl- concentration.(ABSTRACT TRUNCATED AT 400 WORDS)


2006 ◽  
Vol 96 (4) ◽  
pp. 2042-2055 ◽  
Author(s):  
James F. Einum ◽  
James T. Buchanan

An in vitro preparation of the nervous system of the lamprey, a lower vertebrate, was used to characterize the properties of spinal neurons with axons projecting to the brain stem [i.e., spinobulbar (SB) neurons)]. To identify SB neurons, extracellular electrodes on each side of the spinal cord near the obex recorded the axonal spikes of neurons impaled with sharp intracellular microelectrodes in the rostral spinal cord. The ascending spinal neurons ( n = 144) included those with ipsilateral (iSB) (63/144), contralateral (cSB) (77/144), or bilateral (bSB) (4/144) axonal projections to the brain stem. Intracellular injection of biocytin revealed that the SB neurons had small- to medium-size somata and most had dendrites confined to the ipsilateral side of the cord, although about half of the cSB neurons also had contralateral dendrites. Most SB neurons had multiple axonal branches including descending axons. Electrophysiologically, the SB neurons were similar to other lamprey spinal neurons, firing spikes throughout long depolarizing pulses with some spike-frequency adaptation. Paired intracellular recordings between SB and reticulospinal (RS) neurons revealed that SB neurons made either excitatory or inhibitory synapses on RS neurons and the SB neurons received excitatory input from RS neurons. Mutual excitation and feedback inhibition between pairs of RS and SB neurons were observed. The SB neurons also received excitatory inputs from primary mechanosensory neurons (dorsal cells), and these same SB neurons were rhythmically active during fictive swimming, indicating that SB neurons convey both sensory and locomotor network information to the brain stem.


2005 ◽  
Vol 93 (1) ◽  
pp. 393-402 ◽  
Author(s):  
De-Pei Li ◽  
Lindsay M. Atnip ◽  
Shao-Rui Chen ◽  
Hui-Lin Pan

Neurons in the paraventricular nucleus (PVN) that project to the brain stem and spinal cord are important for autonomic regulation. The excitability of preautonomic PVN neurons is controlled by the noradrenergic input from the brain stem. In this study, we determined the role of α2 adrenergic receptors in the regulation of excitatory and inhibitory synaptic inputs to spinally projecting PVN neurons. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were recorded using whole cell voltage-clamp techniques on PVN neurons labeled by a retrograde fluorescence tracer injected into the thoracic spinal cord of rats. Bath application of 5–20 μM clonidine, an α2 receptor agonist, significantly reduced the amplitude of evoked GABAergic IPSCs in a dose-dependent manner. Also, 10 μM clonidine significantly decreased the frequency (from 2.68 ± 0.41 to 1.22 ± 0.40 Hz) but not the amplitude of miniature IPSCs (mIPSCs), and this effect was blocked by the α2 receptor antagonist yohimbine. Furthermore, clonidine increased the paired-pulse ratio of evoked IPSCs from 1.25 ± 0.05 to 1.61 ± 0.08 ( P < 0.05). On the other hand, clonidine had little effect on evoked glutamatergic EPSCs, mEPSCs, and the paired-pulse ratio of evoked EPSCs in most labeled cells examined. Additionally, immunofluorescence labeling revealed that the α2A receptor and GABA immunoreactivities were co-localized in close apposition to labeled PVN neurons. Collectively, these data suggest that stimulation of α2 adrenergic receptors primarily attenuates GABAergic inputs to PVN output neurons to the spinal cord. The presynaptic α2 receptors function as heteroreceptors to modulate synaptic GABA release and contribute to the hypothalamic regulation of sympathetic outflow.


1997 ◽  
Vol 77 (1) ◽  
pp. 229-235 ◽  
Author(s):  
Susan A. Deuchars ◽  
K. Michael Spyer ◽  
Michael P. Gilbey

Deuchars, Susan A., K. Michael Spyer, and Michael P. Gilbey. Stimulation within the rostral ventrolateral medulla can evoke monosynaptic GABAergic IPSPs in sympathetic preganglionic neurons in vitro. J. Neurophysiol. 77: 229–235, 1997. The inhibitory responses of identified sympathetic preganglionic neurons (SPNs) to stimulation within the rostral ventrolateral medulla (RVLM) were studied to determine their nature and pharmacology. Whole cell patch-clamp recordings were made from 36 SPNs in the upper thoracic segments of the spinal cord in a neonatal rat brain stem-spinal cord preparation. Neurons were identified as SPNs on the basis of their antidromic activation after stimulation of the ipsilateral segmental ventral root and their morphology and location in the intermediolateral cell column and intercalated nucleus. In all SPNs, electrical stimulation of the RVLM evoked fast excitatory postsynaptic potentials (EPSPs) that were mediated by non- N-methyl-d-aspartate (NMDA) and NMDA receptors. These excitatory responses were the most prominent response in control artificial cerebrospinal fluid and have been studied previously. In 22 of the SPNs, RVLM stimulation also elicited fast inhibitory postsynaptic potentials (IPSPs), which increased in amplitude as the membrane was depolarized. Five of these neurons were not studied further as they responded occasionally with IPSPs that had highly variable onset latencies indicating the involvement of a polysynaptic pathway. In the remaining SPNs ( n = 17), the evoked IPSPs persisted in the presence of the excitatory amino acid antagonists 6-cyano-7-nitroquinoxaline-2,3,-dione and d,l-2-amino-5-phosphonopentanoic acid. In eight of these SPNs, it was necessary to block the EPSPs to reveal the IPSPs. In the 7 SPNs tested, the onset latencies of the IPSPs were not significantly different from the onset latencies of the fast EPSPs. The low sweep-to-sweep fluctuations in onset latency of individual IPSPs (absolute average deviation: 0.4 ms) indicated that the IPSPs were elicited by activation of a monosynaptic pathway. The amplitudes of the IPSPs decreased in amplitude as the membrane was hyperpolarized and reversed in polarity at −70.3 ± 1.7 mV (mean ± SD), which was close to the equilibrium potential for chloride ions. In addition, in seven SPNs, bath applications of 5 μM bicuculline, a γ-aminobuturic acid-A (GABAA) antagonist, abolished or reduced the evoked IPSPs. Five SPNs also were studied that displayed ongoing IPSPs. The amplitudes of these IPSPs increased with membrane depolarization and were blocked by bath applications of 5 μM bicuculline, suggesting that they also were mediated by activation of GABAA receptors. These results demonstrate the existence of a bulbospinal GABAergic pathway impinging directly onto SPNs. This pathway may be tonically active in the neonatal rat brain stem-spinal cord preparation.


2002 ◽  
Vol 30 (02n03) ◽  
pp. 369-378 ◽  
Author(s):  
Ching-Liang Hsieh ◽  
Chin-Hsin Wu ◽  
Jaung-Geng Lin ◽  
Chuang-Chien Chiu ◽  
Mike Chen ◽  
...  

Our previous studies have shown that the cerebral cortex modulates the physiological mechanisms of acupuncture. However, the role of the brain stem and spinal cord in acupuncture remains unclear. The present study investigated the action of the brain stem and spinal cord in acupuncture. A total of eight healthy adult volunteers were studied. Electrical stimulation of the supraorbital nerve in the supraorbital foramen was used to evoke the blink reflex. Electrical stimulation of the posterior tibial nerve in the right popliteal fossa was used to evoke the H reflex. Electroacupuncture (EA) of 2 Hz was applied to the Zusanli acupoint in the right or left leg. The area of the R1 and R2 components of the blink reflex, and the greatest H/M ratio and H-M interval of the H reflex were measured before EA, during EA and at various post-EA periods. These data were analyzed quantitatively by a computerized electromyographic examination system. The results indicate that EA did not change the R1 and ipsilateral R2 components of the blink reflex. EA depressed the contralateral R2 component of the blink reflex 10 minutes and 40 minutes after the start of EA, but not after 5 minutes. EA applied to the Zusanli acupoint did not change the H/M ratio or the H-M interval of the H reflex. The results of this study indicate that 2 Hz EA of the Zusanli acupoint does not change the R1 component of the blink reflex, and the H/M ratio and the H-M interval of the H reflex, suggesting that 2 Hz EA does not change the monosynaptic reflex in the brain stem and spinal cord in humans. We also found that EA at 2-Hz depressed the contralateral but not the ipsilateral R2 component of the blink reflex, suggesting that longer pathways, perhaps including the cerebral cortex, may play a role in the physiological mechanisms responsible for the effectiveness of acupuncture.


2008 ◽  
Vol 100 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Ian T. Gordon ◽  
Mary J. Dunbar ◽  
Kimberly J. Vanneste ◽  
Patrick J. Whelan

At birth, thoracosacral spinal cord networks in mouse can produce a coordinated locomotor-like pattern. In contrast, less is known about the cervicothoracic networks that generate forelimb locomotion. Here we show that cervical networks can produce coordinated rhythmic patterns in the brain stem-spinal cord preparation of the mouse. Segmentally the C5 and C8 neurograms were each found to be alternating left-right, and the ipsilateral C5 and C8 neurograms also alternated. Collectively these patterns were suggestive of locomotor-like activity. This pattern was not dependent on the presence of thoracosacral segments because they could be evoked following a complete transection of the spinal cord at T5. We next demonstrated that activation of thoracosacral networks either pharmacologically or by stimulation of sacrocaudal afferents could produce rhythmic activity within the C5 and C8 neurograms. On the other hand, pharmacological activation of cervical networks did not evoke alternating cervical rhythmic activity either in isolated cervicothoracic or -sacral preparations. Under these conditions, we found that activation of cervicothoracic networks could alter the timing of thoracosacral locomotor-like patterns. When thoracosacral networks were not activated pharmacologically but received rhythmic drive from cervicothoracic networks, a pattern of slow bursts with superimposed fast synchronous oscillations became the dominant lumbar neurogram pattern. Our data suggest that in neonatal mice the cervical CPG is capable of producing coordinated rhythmic patterns in the absence of input from lumbar segments, but caudorostral drive contributes to cervical patterns and rhythm stability.


1990 ◽  
Vol 64 (3) ◽  
pp. 727-735 ◽  
Author(s):  
Y. Atsuta ◽  
E. Garcia-Rill ◽  
R. D. Skinner

1. Electrical stimulation of two brain stem regions in the decerebrate neonatal rat brain--the mesencephalic locomotor region (MLR) and the medioventral medulla (MED)--were found to elicit rhythmic limb movements in the hind-limb-attached, in vitro, brain stem-spinal cord preparation. 2. Electromyographic (EMG) analysis revealed locomotion similar to that observed during stepping in the adult rat. The step-cycle frequency could be increased by application of higher-amplitude currents; but, unlike the adult, alternation could not be driven to a gallop. 3. Threshold currents for inducing locomotion were significantly lower for stimulation of the MED compared with the MLR. Brain stem transections carried out at midpontine levels demonstrated that the presence of the MLR was not required for the expression of MED-stimulation-induced effects. 4. Substitution of the standard artificial cerebrospinal fluid (aCSF) by magnesium-free aCSF did not affect interlimb relationships and resulted in a significant decrease of the threshold currents for inducing locomotion. 5. Fixation of the limbs during electrical stimulation of brain stem sites altered the amplitude and duration of the EMG patterns, but the basic rhythm and timing of each muscle contraction during the step cycle was not affected. 6. These studies suggest that, although peripheral afferent modulation is evident in the neonatal locomotor control system, descending projections from brain stem-locomotor regions appear capable of modulating the activity of spinal pattern generators as early as the day of birth. However, there may be ceiling to the maximal frequency of stepping possible at this early age, perhaps suggesting a later-developing mechanism for galloping.


Sign in / Sign up

Export Citation Format

Share Document