Synaptic transmission between ventrolateral funiculus axons and lumbar motoneurons in the isolated spinal cord of the neonatal rat

1994 ◽  
Vol 72 (5) ◽  
pp. 2406-2419 ◽  
Author(s):  
M. Pinco ◽  
A. Lev-Tov

1. We studied the projections of ventrolateral funiculus (VLF) axons to lumbar motoneurons in the in vitro spinal cord preparation of 1- to 6-day-old rats using extracellular and sharp-electrode intracellular recordings. 2. Ipsilateral and contralateral VLF projections to lumbar motoneurons (L4-L5) could be activated in the neonatal rat by stimulation of the surgically peeled VLF at the rostral (L1-L2) and caudal lumbar (L6) cord. Motoneurons were activated ipsilaterally through short- and long-latency projections in all cases and contralaterally through long-latency projections in most cases. 3. Suppression of the excitatory components of VLF postsynaptic potentials (PSPs) by application of the specific antagonists of N-methyl D-aspartate (NMDA) and non-NMDA receptors, 2-amino-5-phosphonovaleric acid (APV) and 6-cyano-7-nitroquin-oxaline-2,3-dione (CNQX), revealed depolarizing PSPs that could be reversed at -55 to -60 mV by injection of depolarizing current steps to the motoneurons. These depolarizing PSPs were blocked by addition of strychnine and bicuculline and are therefore suggested to be glycine and gamma-aminobutyric acid-A (GABAA) receptor-mediated inhibitory PSPs. The identity of a small (< or = 0.2 mV) residual depolarizing component that persisted in the presence of APV, CNQX, strychnine, and bicuculline remains to be determined. 4. Short-latency excitatory PSPs (EPSPs) could be resolved from the ipsilaterally elicited VLF PSPs after the reduction of the polysynaptic activity in the preparation by administration of mephenesin, which was followed by suppression of the glycine and GABAA receptor-mediated components of the PSPs by bath application of strychnine and bicuculline. The latencies of these EPSPs were similar to those of the monosynaptic dorsal root afferent EPSPs recorded from the same motoneurons. These short-latency VLF EPSPs were shortened by the NMDA antagonist APV and revealed an NMDA receptor-mediated component after administration of the non-NMDA receptor antagonist CNQX. Addition of the GABAB receptor agonist L-(-) baclofen or the glutamate analogue L-2-amino-4-phosphonobutyric acid (L-AP4) attenuated the pharmacologically resolved short-latency EPSPs.(ABSTRACT TRUNCATED AT 400 WORDS)

1993 ◽  
Vol 70 (6) ◽  
pp. 2241-2250 ◽  
Author(s):  
M. K. Floeter ◽  
A. Lev-Tov

1. The excitation of lumbar motoneurons by reticulospinal axons traveling in the medial longitudinal fasciculus (MLF) was investigated in the newborn rat using intracellular recordings from lumbar motoneurons in an in vitro preparation of the brain stem and spinal cord. The tracer DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine) was introduced into the MLF of 6-day-old littermate rats that had been fixed with paraformaldehyde to evaluate the anatomic extent of this developing pathway. 2. Fibers labeled from the MLF by DiI were present in the cervical ventral and lateral white matter and a smaller number of labeled fibers extended to the lumbar enlargement. Patches of sparse terminal labeling were seen in the lumbar ventral gray. 3. In the in vitro preparation of the brain stem and spinal cord, MLF stimulation excited motoneurons through long-latency pathways in most motoneurons and through both short-(< 40 ms) and long-latency connections in 16 of 40 motoneurons studied. Short- and longer-latency components of the excitatory response were evaluated using mephenesin to reduce activity in polysynaptic pathways. 4. Paired-pulse stimulation of the MLF revealed a modest temporal facilitation of the short-latency excitatory postsynaptic potential (EPSP) at short interstimulus intervals (20–200 ms). Trains of stimulation at longer interstimulus intervals (1–30 s) resulted in a depression of EPSP amplitude. The time course of the synaptic depression was compared with that found in EPSPs resulting from paired-pulse stimulation of the dorsal root and found to be comparable. 5. The short-latency MLF EPSP was reversibly blocked by 6-cyano-7-nitroquinoxaline (CNQX), an antagonist of non-N-methyl-D-aspartate glutamate receptors, with a small CNQX-resistant component. Longer-latency components of the MLF EPSP were also blocked by CNQX, and some late components of the PSP were sensitive to strychnine. MLF activation of multiple polysynaptic pathways in the spinal cord is discussed.


1991 ◽  
Vol 65 (5) ◽  
pp. 1227-1241 ◽  
Author(s):  
I. Nose ◽  
H. Higashi ◽  
H. Inokuchi ◽  
S. Nishi

1. To investigate postsynaptic potentials (PSPs), we made intracellular recordings from neurons of the amygdaloid central nucleus in slices from the guinea pig and rat brains maintained in vitro. The results from guinea pigs and rats were very similar. 2. In the presence of bicuculline (20 microM), focal electrical stimulation of the amygdaloid basal nucleus with low intensities elicited short-latency excitatory PSPs (EPSPs) followed by long-latency EPSPs. The short-latency EPSP was selectively blocked by 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX; 10-20 microM). The long-latency EPSP was preferentially abolished by D,L-2-amino-5-phosphonovaleric acid (D,L-APV; 40 microM) and was augmented by removal of extracellular Mg2+. The compound EPSP reversed at -4 mV, which was close to -1 mV, the reversal potential for pressure-ejected glutamate (Glu). 3. When the intensity of the focal stimulation was increased in the presence of bicuculline (20 microM), CNQX (20 microM), and D,L-APV (50 microM), a second EPSP with a short latency and a prolonged duration could be evoked in approximately 65% of the neurons. The EPSPs were reversibly blocked by d-tubocurarine (50 microM) or hexamethonium (200 microM) but were unaffected by atropine (1 microM) or a 5-hydroxytryptamine type 3 receptor antagonist, ICS-205930 (5-10 microM). In these neurons, acetylcholine (ACh; 1-3 mM) caused a depolarization, associated with a decreased input resistance. 4. In the presence of CNQX (20 microM) and D,L-APV (50 microM), single focal stimulation of the dorsolateral subdivision in the central nucleus with low intensities elicited a depolarizing inhibitory PSP (IPSP). The IPSP was reversibly abolished by bicuculline (20-40 microM). The reversal potential (-63 mV) for the IPSP was similar to the reversal potential (-61 mV) for the response to gamma-aminobutyric acid (GABA) applied by pressure ejection. 5. In the presence of bicuculline (20-40 microM) and CNQX (20 microM), a repetitive focal stimulus with high intensities delivered to the dorsolateral subdivision produced a hyperpolarizing PSP followed by a slow depolarization in most neurons. Of putative inhibitory amino acid transmitters, glycine (Gly; 3 mM) produced only a hyperpolarization, associated with a decrease in input resistance. Strychnine (1-2 microM) reversibly blocked both the Gly hyperpolarization and the synaptically evoked hyperpolarization. The reversal potential of -81 mV for the hyperpolarizing PSP was close to -82 mV for the Gly hyperpolarization. The reversal potential for the Gly response was shifted to less negative values by increasing the external K+ concentration or decreasing the extracellular Cl- concentration.(ABSTRACT TRUNCATED AT 400 WORDS)


2005 ◽  
Vol 94 (6) ◽  
pp. 3805-3814 ◽  
Author(s):  
Kristine C. Cowley ◽  
Eugene Zaporozhets ◽  
Jason N. MacLean ◽  
Brian J. Schmidt

Previous work has established that in vitro bath application of N-methyl-d-aspartic acid (NMDA) promotes locomotor activity in a variety of vertebrate preparations including the neonatal rat spinal cord. In addition, NMDA receptor activation gives rise to active membrane properties that are postulated to contribute to the generation or stabilization of locomotor rhythm. However, earlier studies yielded conflicting evidence as to whether NMDA receptors are essential in this role. Therefore in this study, we examined the effect of NMDA receptor blockade, using d-2-amino-5-phosphono-valeric acid (AP5), on locomotor-like activity in the in vitro neonatal rat spinal cord. Locomotor-like activity was induced using 5-hydroxytryptamine (5-HT), acetylcholine, combined 5-HT and NMDA receptor activation, increased K+ concentration, or electrical stimulation of the brain stem and monitored using suction electrode recordings of left and right lumbar ventral root discharge. We also studied the effect on locomotor capacity of selectively suppressing NMDA receptor–mediated active membrane properties; this was achieved by removing Mg2+ ions from the bath, which in turn abolishes voltage-sensitive blockade of the NMDA receptor channel. The results show that, although NMDA receptor activation may seem essential for locomotor network operation under some experimental conditions, locomotor-like rhythms can nevertheless be generated in the presence of AP5 if spinal cord circuitry is exposed to appropriate levels of non–NMDA receptor–dependent excitation. Therefore neither NMDA receptor–mediated nonlinear membrane properties nor NMDA receptor activation in general is universally essential for locomotor network activation in the in vitro neonatal rat spinal cord.


1996 ◽  
Vol 271 (5) ◽  
pp. R1304-R1310 ◽  
Author(s):  
Y. W. Li ◽  
P. G. Guyenet

In anesthetized rats, iontophoresis of the gamma-aminobutyric acid (GABAB)-receptor agonist and antispastic drug baclofen inhibits the bulbospinal vasomotor neurons of the rostral ventrolateral medulla (RVLM). The present study was carried out to determine whether C1 adrenergic and other bulbospinal neurons of the RVLM have postsynaptic GABAB receptors. Retrogradely labeled RVLM bulbospinal neurons (n = 52) were recorded in 120-micron-thick slices from neonatal rat brain (3-10 days old). Most neurons (48/52) were tonically active (3 +/- 0.6 spikes/s). Twenty-six neurons were recovered histologically, and 18 of them were immunoreactive for tyrosine hydroxylase (TH). In current clamp, baclofen (0.3-10 microM) hyperpolarized RVLM bulbospinal cells in a dose-dependent manner (16 +/- 0.5 mV hyperpolarization by 3 microM baclofen; n = 19) and decreased input resistance by 40% (n = 10). In voltage clamp (1 microM tetrodotoxin present; holding potential: -40 to -60 mV), 3 microM baclofen induced an outward current of 21 +/- 2 pA (n = 29). This current exhibited inward rectification and reversed polarity close to the K+ equilibrium potential (external K+ from 2.5 to 10 mM). The current induced by baclofen was reduced 90% by 0.1-0.2 mM BaCl2 (n = 6) and was blocked reversibly by the selective GABAB-receptor antagonist CGP-55845A (0.5-1 microM; n = 6). All histologically verified TH-immunoreactive cells (n = 18) were sensitive to baclofen. In summary, RVLM bulbospinal neurons including C1 adrenergic cells possess GABAB receptors. Activation of these receptors increases an inwardly rectifying K+ conductance. This effect reduces the intrinsic firing frequency of RVLM vasomotor neurons "in vitro" and may contribute to the sympatholytic action of baclofen "in vivo."


1995 ◽  
Vol 74 (3) ◽  
pp. 1109-1117 ◽  
Author(s):  
K. C. Cowley ◽  
B. J. Schmidt

1. The role of inhibitory amino acid transmission in the coordination and generation of rhythmic motor activity was examined with the use of an in vitro neonatal rat spinal cord preparation. Before adding gamma-aminobutyric acid (GABA) or glycine receptor agonists and antagonists, rhythmic motor activity was induced by bath application of acetylcholine (ACh), N-methyl-D,L-aspartate (NMA), or serotonin (5-HT) while monitoring bilateral ankle flexor and extensor electroneurograms (ENGs). The timing of rhythmic flexor and extensor discharge was consistent with that seen during overground locomotion in 27% of 84 bath applications of these substances (n = 65 preparations). 2. Subsequent addition of the GABAA receptor agonist muscimol, the GABAB receptor agonist baclofen, or glycine, abolished rhythmic activity in 95% of the tested applications. 3. GABAB receptor blockade did not disrupt alternating patterns of ENG discharge. However, addition of the GABAA receptor antagonist bicuculline, or the glycine receptor antagonist strychnine, transformed alternating flexor-extensor and left-right activity into patterns characterized by bilaterally synchronous rhythmic activation of all hindlimb ENGs. The onset of individual ENG bursts was more abrupt following bicuculline or strychnine. Strychnine also synchronized high-frequency (4-8 Hz) packets of rhythmic discharge within ENG bursts. 4. Some preparations developed synchronous, but unstable, rhythmic activity in the presence of bicuculline or strychnine alone. However, NMA, 5-HT, or ACh was usually required in addition to these antagonists to promote sustained rhythmic activity.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 79 (5) ◽  
pp. 2804-2808 ◽  
Author(s):  
Jason N. Maclean ◽  
Kristine C. Cowley ◽  
Brian J. Schmidt

MacLean, Jason N., Kristine C. Cowley, and Brian J. Schmidt. NMDA receptor-mediated oscillatory activity in the neonatal rat spinal cord is serotonin dependent. J. Neurophysiol. 79: 2804–2808, 1998. The effect of serotonin (5-HT) receptor blockade on rhythmic network activity and on N-methyl-d-aspartate (NMDA) receptor-induced membrane voltage oscillations was examined using an in vitro neonatal rat spinal cord preparation. Pharmacologically induced rhythmic hindlimb activity, monitored via flexor and extensor electroneurograms or ventral root recordings, was abolished by 5-HT receptor antagonists. Intrinsic motoneuronal voltage oscillations, induced by NMDA in the presence of tetrodotoxin (TTX), either were abolished completely or transformed to long-lasting voltage shifts by 5-HT receptor antagonists. Conversely, 5-HT application facilitated the expression of NMDA-receptor–mediated rhythmic voltage oscillations. The results suggest that an interplay between 5-HT and NMDA receptor actions may be critical for the production of rhythmic motor behavior in the mammalian spinal cord, both at the network and single cell level.


2004 ◽  
Vol 190 (5) ◽  
pp. 343-357 ◽  
Author(s):  
F. Clarac ◽  
E. Pearlstein ◽  
J. F. Pflieger ◽  
L. Vinay

1993 ◽  
Vol 69 (6) ◽  
pp. 2116-2128 ◽  
Author(s):  
S. W. Thompson ◽  
C. J. Woolf ◽  
L. G. Sivilotti

1. The effect of brief primary afferent inputs on the amplitude and duration of the synaptic potentials evoked in ventral horn (VH) neurons by the activation of other unconditioned primary afferents was studied by current-clamp intracellular recording in the neonatal rat hemisected spinal cord in vitro. Low-frequency (1 Hz) trains of stimulation were applied to a lumbar dorsal root (Conditioning root) for 20-30 s. Test excitatory synaptic potentials (EPSPs) were evoked by single electrical shocks applied to an adjacent Test dorsal root. 2. Test and Conditioning inputs were generated at stimulation strengths sufficient to activate A beta-, A delta- and C-afferent fibers successively. At A delta- and C-fiber strength the EPSPs lasted for 4-6 s, and, during the repetitive Conditioning inputs, these summated to produce a progressively incrementing cumulative depolarization that slowly decayed back to the control Vm over tens of seconds. 3. Dorsal root conditioning produced heterosynaptic facilitation, defined as an enhancement of Test EPSPs above their DC matched controls, in 7 out of 20 neurons. To facilitate the unconditioned afferent input, the intensity of conditioning stimulation had to exceed the threshold for the activation of thin myelinated (A delta) afferents: conditioning at A beta-fiber strength had no effect, whereas A delta- and C-fiber strength conditioning were equally effective. 4. Heterosynaptic facilitation of only A beta- or A delta-fiber-evoked Test EPSPs was observed, no enhancement of C-fiber strength Test EPSPs could be demonstrated. The facilitation manifested as increases in the EPSP peak amplitude, area or the number of action potentials evoked. 5. Conditioning trials that produced heterosynaptic facilitation generated cumulative depolarizations larger than those produced by ineffective conditioning trials (9.1 +/- 3.1 vs. 3.3 +/- 0.5 mV after 20 s conditioning at resting Vm, mean +/- SE, n = 6 and 13, respectively; P < 0.05). The slope of the Vm trajectory during the summation of the conditioning EPSPs was higher in trials resulting in heterosynaptic facilitation, at 0.31 +/- 0.10 mV/s in neurons with heterosynaptic facilitation and 0.06 +/- 0.02 mV/s in cells without heterosynaptic facilitation (P < 0.05). 5. Four of the 20 VH neurons in our sample responded to A delta/C-fiber conditioning with action-potential windup: all 4 also displayed heterosynaptic facilitation. 6. Heterosynaptic facilitation decayed after the completion of the conditioning stimulus with a time course that was parallel to but not superimposable on that of the slow Vm depolarization evoked by the conditioning.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document