Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation

1994 ◽  
Vol 71 (6) ◽  
pp. 2033-2045 ◽  
Author(s):  
E. N. Warman ◽  
D. M. Durand ◽  
G. L. Yuen

1. We have developed a 16-compartment model that reproduces most of the features of the CA1 pyramidal cell electrophysiology observed experimentally. The model was constructed using seven active ionic conductances: gNa, gCa, gDR, gCT, gA, gM, and gAHP whose kinetics have been, inferred, in most cases, from the available voltage-clamp data obtained from these cells. We focussed the simulation on the initial and late accommodation, the slow depolarization potential and the spike broadening during repetitive firing, because their mechanisms are not well understood. 2. Current-clamp records were reproduced by iterative adjustments to the ionic maximum conductances, scaling and/or “reshaping” of the gates' time constant within the experimental voltage-clamp data, and shifting the position of the steady-state gate opening. The final properties of the ionic channels were not significantly different from the voltage-clamp experiments. 3. The resulting model reproduces all four after-potentials that have been recorded to follow activation of the cell. The fast, medium, and slow after-hyperpolarization potentials (AHPs) were, respectively, generated by ICT, IM, and IAHP. Furthermore, the model suggests that the mechanisms underlying the depolarization after potential (DAP) is mostly due to passive recharging of the soma by the dendrites. 4. The model also reproduces most of the firing features experimentally observed during injection of long current pulses. Model responses showed a small initial decrease in the firing frequency during a slow underlying depolarization potential, followed by a more significant frequency decrease. Moreover, a gradual broadening of the action potential and loss of the fast AHP were also observed during the initial high-frequency firing, followed, as the firing frequency decreased, by a gradual recovery of the spikes' original width and fast AHP amplitude increase. 5. A large reduction of the K repolarizing current was required to reproduce the spike broadening and reduction of the fast AHP experimentally observed in CA1 cells during repetitive firing responses. The incorporation of a transient Ca- and voltage-dependent K current (ICT) into the model successfully reproduced these experimental observations. In contrast, we were unable to reproduce this phenomenon when a large persistent Ca- and voltage-dependent K current (generally named IC) was included in the model. These results suggest that there is a strong contribution to action-potential repolarization and fast AHP by a transient Ca- and voltage-dependent K current (ICT). 6. The two accommodation steps were induced by a progressively enlargement of two K currents IM (initial) and IAHP (late).(ABSTRACT TRUNCATED AT 400 WORDS)

1989 ◽  
Vol 61 (2) ◽  
pp. 245-256 ◽  
Author(s):  
R. C. Foehring ◽  
P. C. Schwindt ◽  
W. E. Crill

1. The effects of norepinephrine (NE) and related agonists and antagonists were examined on large neurons from layer V of cat sensorimotor cortex ("Betz cells") were examined in a brain slice preparation using intracellular recording, constant current stimulation and single microelectrode voltage clamp. 2. Application of NE (0.1-100 microM) usually caused a small depolarization from resting potential; hyperpolarizations were rare. Application of NE reversibly reduced rheobase and both the Ca2+- and Na+-dependent portions of the slow afterhyperpolarization (sAHP) that followed sustained firing evoked by constant current injection. The faster Ca2+-dependent medium afterhyperpolarization (mAHP), the fast afterhyperpolarization (fAHP), the action potential, and input resistance were unaffected. 3. The changes in excitability produced by NE application were most apparent during prolonged stimulation. The cells exhibited steady repetitive firing to currents that were formerly ineffective. The slow phase of spike frequency adaptation was reduced selectively and less habituation occurred during repeated long-lasting stimuli. The relation between firing rate and injected current became steeper if firing rate was averaged over several hundred milliseconds. 4. During voltage clamp in TTX, NE application selectively reduced the slow component of Ca2+-mediated K+ current. The faster Ca2+-mediated K+ current was unaffected, as were two voltage-dependent, transient K+ currents, the anomalous rectifier and leakage conductance measured at resting potential. Depolarizing voltage steps in the presence of Cd2+ revealed an apparent time- and voltage-dependent increase of the persistent Na+ current after NE application. The voltage-clamp results suggested ionic mechanisms for all effects seen during constant current stimulation except the depolarization from resting potential. The latter was insensitive to Cd2+ and TTX and occurred without a detectable change in membrane conductance. 5. NE application did not alter Ca2+ spikes evoked in the presence of TTX and 10 mM TEA. Inward Ca2+ currents examined during voltage clamp in TTX (with K+ currents reduced) became slightly larger after NE application. We conclude that NEs reduction of the slow Ca2+-mediated K+ current is not caused by reduction of Ca2+ influx. 6. Effects on membrane potential, rheobase, and the sAHP were mimicked by the beta-adrenergic agonist isoproterenol, but not by the alpha-adrenergic agonists clonidine or phenylephrine at higher concentrations.(ABSTRACT TRUNCATED AT 400 WORDS)


1980 ◽  
Vol 88 (1) ◽  
pp. 293-304 ◽  
Author(s):  
YOUKO SATOW ◽  
CHING KUNG

Late K-outward currents upon membrane depolarization were recorded in Paramecium tetraurelia under a voltage clamp. A Ca-induced K-outward component is demonstrated by subtracting the value of the outward current in a pawn A mutant lacking functional Ca-channels (pwA500). The Ca-induced K-outward current activates slowly, reaching a peak after 100 to 1000 ms. The current then remains steady or reaches the steady state after a decline of several seconds. EGTA2- injection experiments show that the Ca-induced K-outward current is dependent on the internal Ca2+ concentration. The current is shown to depend on the voltage-dependent Ca conductance, by study of the leaky pawn A mutant (pwA132), which has a lowered Ca conductance as well as a lowered Ca-induced K-current. The Ca-induced GK is thus indirectly dependent on the voltage. The maximal GK is about 40 nmho/cell at + 7 mV in 4 mM-K+. The Ca-induced K current is sustained throughout the prolonged depolarization and the prolonged ciliary reversal.


1993 ◽  
Vol 69 (6) ◽  
pp. 2150-2163 ◽  
Author(s):  
F. Viana ◽  
D. A. Bayliss ◽  
A. J. Berger

1. The role of multiple potassium conductances in action potential repolarization and repetitive firing behavior of hypoglossal motoneurons was investigated using intracellular recording techniques in a brain stem slice preparation of the neonatal rat (0-15 days old). 2. The action potential was followed by two distinct afterhyperpolarizations (AHPs). The early one was of short duration and is termed the fAHP; the later AHP was of longer duration and is termed the mAHP. The amplitudes of both AHPs were enhanced by membrane potential depolarization (further from EK). In addition, their amplitudes were reduced by high extracellular K+ concentration, suggesting that activation of potassium conductances underlies both phases of the AHP. 3. Prolongation of the action potential and blockade of the fAHP were observed after application of 1) tetraethylammonium (TEA) (1-10 mM) and 2) 4-aminopyridine (4-AP) (0.1-0.5 mM). Calcium channel blockers had little or no effect on the fAHP or action potential duration. 4. The size of the mAHP was diminished by 1) manganese, 2) lowering external Ca2+, 3) apamin, and 4) intracellular injection of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) suggesting that influx of calcium activates the potassium conductance that underlies the mAHP. 5. The mAHP was unaffected by nifedipine (20 microM), but was strongly reduced by focal application of omega-conotoxin GVIA, suggesting that N-type calcium channels represent the major calcium influx pathway for activation of the calcium-dependent K+ conductance underlying the mAHP. 6. Repetitive firing properties were investigated by injecting long-duration depolarizing current pulses. Steady-state firing rose linearly with injected current amplitude. The slope of the firing frequency-current (f-I) relationship averaged approximately 30 Hz/nA in control conditions. Blockade of the conductance underlying the mAHP caused a marked increase in the minimal repetitive firing frequency and in the slope of the f-I plot, indicating a prominent role for the conductance underlying the mAHP in controlling repetitive firing behavior. 7. We conclude that action potential repolarization and AHPs are due to activation of pharmacologically distinct potassium conductances. Whereas repolarization of the action potential and the fAHP involves primarily a voltage-dependent, calcium-independent potassium conductance that is TEA- and 4-AP-sensitive, the mAHP requires the influx of extracellular calcium and is apamin sensitive. Activation of the calcium-activated potassium conductance greatly influences the normal repetitive firing of neonatal hypoglossal motoneurons.


1995 ◽  
Vol 74 (2) ◽  
pp. 506-518 ◽  
Author(s):  
L. D. Matzel ◽  
I. A. Muzzio ◽  
R. F. Rogers

1. gamma-Aminobuturic acid-B (GABAB) receptors play a role in the mediation of slow inhibitory postsynaptic potentials in mammalian as well as some nonmammalian species. In identified photoreceptors from the marine mollusc Hermissenda, recent evidence has suggested that GABA, as well as the GABAB receptor agonist baclofen, might simultaneously modulate multiple conductances on the postsynaptic membrane. Here, using intracellular current-clamp and single-electrode voltage-clamp techniques, we have characterized responses to baclofen in the B photoreceptors of the Hermissenda eye. 2. Microapplication of baclofen (12.5–62.5 microM) to the terminal branches of the B photoreceptors induced a slow, concentration-dependent hyperpolarization (approximately 3–8 mV) that was accompanied by a cessation of spontaneous action potentials and a positive shift in firing threshold. Both the hyperpolarization and the shift in spike threshold in response to baclofen were attenuated largely by the K+ channel blocker tetraethylammonium chloride (TEA; 50 mM). 3. Bath application of baclofen (100 microM) decreased the amplitude, duration, and the afterhyperpolarization (AHP) of evoked action potentials. Although baclofen's effect on spike duration and amplitude persisted in the absence of extracellular Ca2+, the reduction of the AHP by baclofen was eliminated, suggesting that multiple conductances mediated the baclofen-induced modification of the action potential. 4. Using a single-electrode voltage-clamp technique, microapplication of baclofen to the terminal branches of the B photoreceptor produced a slow, net outward current (< 0.5 nA) that reversed near the equilibrium potential for K+ and shifted to more positive potentials when extracellular K+ was increased, in approximate agreement with the Nernst equation for K+. 5. Baclofen induced an increase in amplitude of the nonvoltage dependent leak conductance (IL), and the increase was blocked by TEA. The baclofen-induced increase of IL was accompanied by an increase in amplitude and a negative shift in the voltage dependence of a slow, steeply voltage-dependent K+ current (IK), which displays selective sensitivity to TEA but does not normally contribute to leak conductance. The amplitude and steady-state inactivation of a fast, transient K+ current, as well as the amplitude of an inwardly rectifying K+ current were unaffected by baclofen. 6. Both the rate of activation as well as the amplitude of a voltage-dependent Ca2+ current (ICa) were reduced by baclofen. The reduction of ICa resulted in a concomitant suppression of a Ca(2+)-dependent K+ current (IK-Ca) that was sufficient to account for the reduction of the AHP after evoked action potentials.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 70 (12) ◽  
pp. 1597-1603 ◽  
Author(s):  
Yoshihito Inoue ◽  
Keiichi Shimamura ◽  
Nicholas Sperelakis

The effects of oxytocin, a uterotonic polypeptide hormone, on the voltage-dependent slow calcium, fast sodium, and potassium channel currents were studied using whole-cell voltage clamp of freshly isolated cells from late pregnant (18–21 day) rat myometrium. The calcium current was rapidly inhibited by oxytocin (about 25% inhibition at 20 nM) in a dose-dependent manner, and this inhibitory effect was completely reversible by washout. However, inhibition was not observed when barium was used as the charge carrier. Sodium current and potassium current were not modified by oxytocin, thus sodium and potassium currents may not play important roles in oxytocin-induced augmentation of uterine contraction. It is concluded that oxytocin stimulates uterine contraction by mechanisms other than augmentation of the voltage-dependent calcium current, e.g., by release of Ca from sarcoplasmic reticulum (by inositol trisphosphate) or by activation of a receptor-operated Ca channel. The inhibition of the slow calcium current may be induced by the elevation of [Ca]i.Key words: oxytocin, ionic channels, uterine smooth muscle, whole-cell voltage clamp, pregnant rat myometrium.


1994 ◽  
Vol 72 (4) ◽  
pp. 382-393 ◽  
Author(s):  
Qi-Ying Liu ◽  
Mario Vassalle

The effects of some components of ischemia on the oscillatory (Vos) and nonoscillatory (Vex) potentials and respective currents (Ios and Iex), as well as their mechanisms, were studied in guinea pig isolated ventricular myocytes by means of a single-microelectrode, discontinuous voltage clamp method. Repetitive activations induced not only Vos and Ios, but also Vex and Iex. A small decrease in resting potential caused an immediate increase in Vos followed by a gradual increase due to the longer action potential. Immediate and gradual increases in Ios also occurred during voltage clamp steps. A small depolarization increased Vos and Vex, and facilitated the induction of spontaneous discharge by fast drive. At Vh where INa is inactivated, depolarizing steps induced larger Ios and Iex, indicating the importance of the Na-independent Ca loading. High [K]odecreased the resting potential, but also Vos, Vex, Ios, Iex, and ICa. In high [K]o, depolarization still increased Vos and Vex. Norepinephrine (NE) enhanced Vos and Vex, and also Ios and Iex, during voltage clamp steps. High [K]o antagonized NE effects, and NE those of high [K]o. In conclusion, on depolarization, Vos and Ios immediately increase through a voltage-dependent mechanism; and then Vos and Ios gradually increase, apparently through an increased Ca load related to the longer action potentials and the Na–Ca exchange. The depolarization induced by Vex may contribute to increase Vos size. Vos and Vex are similarly influenced by different procedures that modify Ca load. The arrhythmogenic events are enhanced by the simultaneous presence of depolarization, faster rate, or NE. Instead, high [K]o decreases Vos and Vex by decreasing ICa and opposes the effects of NE. The voltage clamp results show that potentiation and antagonism between different components of ischemia are due primarily to changes in Ca loading and not to changes in action potential configuration.Key words: ischemia, arrhythmias, oscillatory and nonoscillatory potentials and currents, norepinephrine, potassium.


1976 ◽  
Vol 67 (5) ◽  
pp. 599-617 ◽  
Author(s):  
R S Kass ◽  
R W Tsien

It is well known that cardiac action potentials are shortened by increasing the external calcium concentration (Cao). The shortening is puzzling since Ca ions are thought to carry inward current during the plateau. We therefore studied the effects of Cao on action potentials and membrane currents in short Purkinje fiber preparations. Two factors favor the earlier repolarization. First, calcium-rich solutions generally raise the plateau voltage; in turn, the higher plateau level accelerates time- and voltage-dependent current changes which trigger repolarization. Increases in plateau height imposed by depolarizing current consistently produced shortening of the action potential. The second factor in the action of Ca ions involves iK1, the background K current (inward rectifier). Raising Cao enhances iK1 and thus favors faster repolarization. The Ca-sensitive current change was identified as an increase in iK1 by virtue of its dependence on membrane potential and Ko. A possible third factor was considered and ruled out: unlike epinephrine, calcium-rich solutions do not enhance slow outward plateau current, ikappa. These results are surprising in showing that calcium ions and epinephrine act quite differently on repolarizing currents, even though they share similar effects on the height and duration of the action potential.


1996 ◽  
Vol 271 (4) ◽  
pp. H1666-H1696 ◽  
Author(s):  
D. S. Lindblad ◽  
C. R. Murphey ◽  
J. W. Clark ◽  
W. R. Giles

We have developed a mathematical model of the rabbit atrial myocyte and have used it in an examination of the ionic basis of the atrial action potential. Available biophysical data have been incorporated into the model to quantify the specific ultrastructural morphology, intracellular ion buffering, and time- and voltage-dependent currents and transport mechanisms of the rabbit atrial cell. When possible, mathematical expressions describing ionic currents identified in rabbit atrium are based on whole cell voltage-clamp data from enzymatically isolated rabbit atrial myocytes. This membrane model is coupled to equations describing Na+, K+, and Ca2+ homeostasis, including the uptake and release of Ca2+ by the sarcoplasmic reticulum and Ca2+ buffering. The resulting formulation can accurately simulate the whole cell voltage-clamp data on which it is based and provides fits to a family of rabbit atrial cell action potentials obtained at 35 degrees C over a range of stimulus rates (0.2–3.0 Hz). The model is utilized to provide a qualitative prediction of the intracellular Ca2+ concentration transient during the action potential and to illustrate the interactions between membrane currents that underlie repolarization in the rabbit atrial myocyte.


2011 ◽  
Vol 105 (5) ◽  
pp. 2487-2500 ◽  
Author(s):  
Crawford I. P. Winlove ◽  
Alan Roberts

The operation of neuronal networks depends on the firing patterns of the network's neurons. When sustained current is injected, some neurons in the central nervous system fire a single action potential and others fire repetitively. For example, in Xenopus laevis tadpoles, primary-sensory Rohon-Beard (RB) neurons fired a single action potential in response to 300-ms rheobase current injections, whereas dorsolateral (DL) interneurons fired repetitively at 10–20 Hz. To investigate the basis for these differences in vivo, we examined drug-induced changes in the firing patterns of Xenopus spinal neurons using whole cell current-clamp recordings. Neuron types were initially separated through cluster analysis, and we compared results produced using different clustering algorithms. We used these results to develop a predictive function to classify subsequently recorded neurons. The potassium channel blocker tetraethylammonium (TEA) converted single-firing RB neurons to low-frequency repetitive firing but reduced the firing frequency of repetitive-firing DL interneurons. Firing frequency in DL interneurons was also reduced by the potassium channel blockers 4-aminopyridine (4-AP), catechol, and margatoxin; 4-AP had the greatest effect. The calcium channel blockers amiloride and nimodipine had few effects on firing in either neuron type but reduced action potential duration in DL interneurons. Muscarine, which blocks M-currents, did not affect RB neurons but reduced firing frequency in DL interneurons. These results suggest that potassium currents may control neuron firing patterns: a TEA-sensitive current prevents repetitive firing in RB neurons, whereas a 4-AP-sensitive current underlies repetitive firing in DL interneurons. The cluster and discriminant analysis described could help to classify neurons in other systems.


1989 ◽  
Vol 145 (1) ◽  
pp. 403-417
Author(s):  
J. Acosta-Urquidi ◽  
C. L. Sahley ◽  
A. L. Kleinhaus

The effects of 100 mumol l-1 serotonin (5-HT) were investigated on the Na+- and Ca2+-dependent action potential and distinct K+ currents in the Retzius (R) cells of the hirudinid leeches Macrobdella decora and Hirudo medicinalis by conventional current-clamp and two-microelectrode voltage-clamp techniques. 1. In normal Na+-containing Ringer, 5-HT decreased the duration of the action potential prolonged by 5 mmol l-1 tetraethylammonium (TEA+) chloride. 2. In Na+-free saline containing 25 mumol l-1 TEA+ to block IK, 5-HT reduced the amplitude and duration of Ca2+ spikes evoked by intracellular current injection. 3. Under voltage-clamp, 5-HT enhanced the peak amplitude of an early transient 4-aminopyridine (4-AP)-sensitive, voltage-dependent outward current, termed IA. A small but significant increase in the time constant of inactivation (tau off) of IA was also measured after exposure to 5-HT. 4. 5-HT suppressed the peak and steady-state amplitudes of a delayed TEA+-sensitive, voltage-dependent outward current, termed IK. These results demonstrate differential simultaneous modulation of distinct K+ currents in the Retzius cell of the leech by the endogenous transmitter serotonin. These cells contain and release 5-HT, and are believed to be multifunction neurons implicated in feeding and swimming. This modulation may change the excitable properties of the cell, leading to a negative feedback autoregulation of its transmitter output.


Sign in / Sign up

Export Citation Format

Share Document