The primate subthalamic nucleus. I. Functional properties in intact animals

1994 ◽  
Vol 72 (2) ◽  
pp. 494-506 ◽  
Author(s):  
T. Wichmann ◽  
H. Bergman ◽  
M. R. DeLong

1. The present study tests several key aspects of the current model of the intrinsic circuitry of the basal ganglia, in particular the degree to which basal ganglia-thalamocortical circuits are functionally segregated at the level of the subthalamic nucleus (STN). To this end the responses of STN cells to somatosensory examination (n = 301 cells), the polarity and latencies of neuronal responses to passive and active movements (n = 223 cells), responses to microstimulation (n = 1589 sites), and cross-correlation functions of pairs of neighboring neurons (n = 72 pairs) were studied in STNs of three African green monkeys. 2. The activity of 55% of cells examined in STN was briskly modulated in response to passive movements of individual contralateral body parts. Of these, 86% responded to passive joint rotation of muscle palpation, but in some cases (25% of responding cells) responses were also elicited by light touch. In 91% of the responding cells responses were elicited by manipulations around a single joint only. 3. The caudoventral sector in STN was largely devoid of cells with responses to somatosensory stimulation. Within the rostrodorsal zone a lateral region containing neurons that responded to arm movements and a more medial region with neurons responding to leg movement were found. Cells responding to orofacial movements were located more dorsally and rostrally. Neurons with similar responses to active and passive movements of the limbs tended to be clustered within “arm” and “leg” zones. 4. Of identified arm cells in STN (n = 80), 36% responded to the application of torque pulses to the elbow (43 responses overall). Forty-eight percent of these cells responded to both extension and flexion torques. Ninety-three percent of the responses were initial increases in discharge, which characteristically occurred earlier and were shorter than initial decreases. Fifty-three percent of the responses were biphasic or multiphasic. 5. During active step tracking movements 40% of STN arm cells (n = 53 cells) responded with significant changes in activity. Thirty-six percent of these cells showed responses with both extension and flexion movements. Of the responses, 90% were increases in discharge. Only 14% of all responses were biphasic or multiphasic. Responses tended to occur around the time of movement onset (average latency 2 ms after movement onset). 6. Microstimulation (bipolar pulses, 40 microA, 200–500 ms train duration, 400 Hz) of the core of STN itself did not appear to produce movement.4+ synchronized activity in only 11% of pairs.(ABSTRACT TRUNCATED AT 400 WORDS)

1990 ◽  
Vol 64 (6) ◽  
pp. 1892-1906 ◽  
Author(s):  
I. Hamada ◽  
M. R. DeLong ◽  
N. Mano

1. The activity of globus pallidus (GP) neurons (n = 1,117) was studied in two monkeys to reexamine the relation of neuronal activity to movement type (slow vs. fast) while they performed both a visually guided step and ramp wrist tracking task. To select neurons specifically related to wrist movements, we employed both a somatosensory examination of individual body parts and a statistical analysis of the strength of temporal coupling of neuronal discharges to active wrist movement. 2. Neuronal responses to somatosensory stimulation were studied in 1,000 high-frequency GP neurons, of which 686 exhibited clear responses to manipulation of body parts. Of the latter, 336 responded to passive manipulation of forelimb joints and 58 selectively to passive flexion or extension of the wrist. 3. In the external segment of GP (GPe), most neurons responding to passive wrist movement were found to be clustered in four to five adjacent, closely positioned (separated by 200 microns) tracks in single coronal planes. The clusters were irregular in shape with a maximal width of 800-1,000 microns. Separate clusters of neurons responsive to passive wrist movement were identified in planes 3 mm apart in one monkey and in planes 500 microns apart in the other. Multiple clusters of neurons were also found for neurons responsive to joints other than the wrist. These findings suggest a more discrete and complex representation of individual joints in the primate GP than previously conceived. 4. During the performance of the wrist flexion and extension task, 92 neurons showed clear and consistent changes in activity. For these neurons we measured, with a statistical method on a trial-by-trial basis, the strength of temporal coupling between the onset of active wrist movement and the onset of change in neuronal discharge rate. Fifteen neurons showed changes in activity time-locked to the onset of active wrist movement. 5. Twelve pallidal neurons were classified as “wrist-related” based on their movement-locked changes in discharge during task performance and their clear responses to passive wrist joint rotation on examination. All of these neurons exhibited statistically significant modulation of their discharge rate during both fast (peak velocity 97–205 degrees/s) and slow (peak velocity 20–62 degrees/s) wrist movements in the task. The amplitudes of modulation were larger during fast wrist movement than slow movement. These results suggest that the basal ganglia motor circuit plays a similar, rather than an exclusive, role in the control of slow and fast limb movements.


2001 ◽  
Vol 7 (3) ◽  
pp. 193-198 ◽  
Author(s):  
A. Parent ◽  
M. Lévesque ◽  
M. Parent
Keyword(s):  

2018 ◽  
Vol 17 (3) ◽  
pp. 239-246 ◽  
Author(s):  
Tatsuya Sasaki ◽  
Ken Kuwahara ◽  
Ittetsu Kin ◽  
Mihoko Okazaki ◽  
Susumu Sasada ◽  
...  

Abstract BACKGROUND Details of the somatotopy within the subthalamic nucleus (STN) are still poorly understood; however, the STN is a common target of deep brain stimulation (DBS) for Parkinson disease. OBJECTIVE To examine somatotopic organization within the STN and identify optimal stimulation sites from 77 surgical cases with microelectrode recording. METHODS STN-DBS was performed for 77 patients with Parkinson disease between 2010 and 2014. We performed passive movements of each joint and captured single neuronal activities to identify movement-related cells (MRCs). The sites of MRCs and active contacts were determined by measuring their distances from the first contact of DBS electrode. Their positional correlations were directly and indirectly analyzed. RESULTS The number of obtained MRCs was 264, of which 151 responded to multiple joints. The average x-, y-, and z-coordinates of the cells of the upper and lower limbs from the midcommisural point were 13.1 ± 1.1 and 12.7 ± 1.2, 0.22 ± 1.3 and −0.45 ± 1.5, and −2.5 ± 1.1 and −3.0 ± 1.4 mm, respectively. Most MRCs were distributed in the upper third of the STN, in its superior, lateral, and posterior regions, along the DBS electrode routes. Active contacts were observed to lie slightly inferior, medial, and posterior to the average MRC position. CONCLUSION Somatotopic organization of the STN was easier to observe in the present study than in previous studies. Optimal stimulation sites were located inferior, medial, and posterior to the average MRC location. The sites may correspond to associative or motor parts through which fibers from the supplementary motor area pass.


2008 ◽  
Vol 100 (5) ◽  
pp. 2515-2524 ◽  
Author(s):  
F. Steigerwald ◽  
M. Pötter ◽  
J. Herzog ◽  
M. Pinsker ◽  
F. Kopper ◽  
...  

We recorded resting-state neuronal activity from the human subthalamic nucleus (STN) during functional stereotactic surgeries. By inserting up to five parallel microelectrodes for single- or multiunit recordings and applying statistical spike-sorting methods, we were able to isolate a total of 351 single units in 65 patients with Parkinson's disease (PD) and 33 single units in 9 patients suffering from essential tremor (ET). Among these were 93 pairs of simultaneously recorded neurons in PD and 17 in ET, which were detected either by the same ( n = 30) or neighboring microelectrodes ( n = 80). Essential tremor is a movement disorder without any known basal ganglia pathology and with normal dopaminergic brain function. By comparing the neuronal activity of the STN in patients suffering from PD and ET we intended to characterize, for the first time, changes of basal ganglia activity in the human disease state that had previously been described in animal models of Parkinson's disease. We found a significant increase in the mean firing rate of STN neurons in PD and a relatively larger fraction of neurons exhibiting burstlike activity compared with ET. The overall proportion of neurons exhibiting intrinsic oscillations or interneuronal synchronization as defined by significant spectral peaks in the auto- or cross-correlations functions did not differ between PD and ET when considering the entire frequency range of 1–100 Hz. The distribution of significant oscillations across the theta (1–8 Hz), alpha (8–12 Hz), beta (12–35 Hz), and gamma band (>35 Hz), however, was uneven in ET and PD, as indicated by a trend in Fisher's exact test ( P = 0.05). Oscillations and pairwise synchronizations within the 12- to 35-Hz band were a unique feature of PD. Our results confirm the predictions of the rate model of Parkinson's disease. In addition, they emphasize abnormalities in the patterning and dynamics of neuronal discharges in the parkinsonian STN, which support current concepts of abnormal motor loop oscillations in Parkinson's disease.


2020 ◽  
Author(s):  
Krishnakanth Kondabolu ◽  
Natalie M. Doig ◽  
Olaoluwa Ayeko ◽  
Bakhtawer Khan ◽  
Alexandra Torres ◽  
...  

AbstractThe striatum and subthalamic nucleus (STN) are considered to be the primary input nuclei of the basal ganglia. Projection neurons of both striatum and STN can extensively interact with other basal ganglia nuclei, and there is growing anatomical evidence of direct axonal connections from the STN to striatum. There remains, however, a pressing need to elucidate the organization and impact of these subthalamostriatal projections in the context of the diverse cell types constituting the striatum. To address this, we carried out monosynaptic retrograde tracing from genetically-defined populations of dorsal striatal neurons in adult male and female mice, quantifying the connectivity from STN neurons to spiny projection neurons, GABAergic interneurons, and cholinergic interneurons. In parallel, we used a combination of ex vivo electrophysiology and optogenetics to characterize the responses of a complementary range of dorsal striatal neuron types to activation of STN axons. Our tracing studies showed that the connectivity from STN neurons to striatal parvalbumin-expressing interneurons is significantly higher (~ four-to eight-fold) than that from STN to any of the four other striatal cell types examined. In agreement, our recording experiments showed that parvalbumin-expressing interneurons, but not the other cell types tested, commonly exhibited robust monosynaptic excitatory responses to subthalamostriatal inputs. Taken together, our data collectively demonstrate that the subthalamostriatal projection is highly selective for target cell type. We conclude that glutamatergic STN neurons are positioned to directly and powerfully influence striatal activity dynamics by virtue of their enriched innervation of GABAergic parvalbumin-expressing interneurons.


2002 ◽  
Vol 2 (01) ◽  
pp. 1 ◽  
Author(s):  
C. Beurrier ◽  
L. Garcia ◽  
B. Bioulac ◽  
C. Hammond

Author(s):  
Charles J. Wilson

The subthalamo-pallidal system constitutes the second layer of circuitry in the basal ganglia, downstream of the striatum. It consists of four nuclei. Two of them, the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN), make their connections primarily within the basal ganglia. The others, the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr), are the output nuclei of the basal ganglia. Collectively, their axons distribute collaterals to all the targets of the basal ganglia. Rare interneurons have been reported in each of them from studies of Golgi-stained preparations, but they have not so far been confirmed using more modern methods. The circuit as described here is based primarily on studies of the axonal arborizations of neurons stained individually by intracellular or juxtacellular labeling.


Sign in / Sign up

Export Citation Format

Share Document