Antigen-induced long-term potentiation of nicotinic synaptic transmission in the superior cervical ganglion of the guinea pig

1995 ◽  
Vol 73 (5) ◽  
pp. 2004-2016 ◽  
Author(s):  
D. Weinreich ◽  
B. J. Undem ◽  
G. Taylor ◽  
M. F. Barry

1. Recordings of evoked postganglionic compound action potentials (CAPs) evoked by preganglionic stimulation were obtained from guinea pig superior cervical ganglia (SCGs) in vitro to study the effects of specific antigen challenge on ganglionic synaptic transmission. SCGs were removed from guinea pigs actively sensitized to ovalbumin. 2. Exposing SCGs from sensitized animals to the sensitizing antigen (0.01-10 micrograms/ml) for 5 min produced a sustained increase in the magnitude of the evoked CAP unaccompanied by a change in the preganglionic volley. Nonsensitizing antigens were ineffective. Also ineffective were antigens applied to nonsensitized SCG. This persistent antigen-induced increase in synaptic transmission was designated antigen-induced long-term potentiation (LTP) (A-LTP) because its duration (> 30 min) greatly outlasted posttetanic potentiation (PTP) in this ganglion. 3. A-LTP and neurogenic LTP (N-LTP) were observed to coexist in the same ganglion; the presence of one form of synaptic plasticity did not preclude the development of the other. Both phenomena were influenced by presynaptic factors: prolonged (2 h, 40 Hz) repetitive presynaptic stimulation abolished A-LTP or N-LTP but did not affect PTP. 4. By contrast to N-LTP, which requires a brief presynaptic tetanus, A-LTP could be triggered over a wide range of presynaptic stimulation (0.016-3 Hz) or even in the absence of presynaptic stimulation. 5. The amplitude and duration of A-LTP were not significantly affected by 1) H1, H2, or H3 histamine receptor antagonists added before or after antigen challenge; 2) the presence of saturating concentrations of histamine (100-300 microM); 3) the presence of specific or nonspecific lipoxygenase inhibitors or a selective cyclooxygenase inhibitor; or 4) blockade of alpha- or beta-adrenergic receptors, 5-HT3 receptors, muscarinic receptors, or glutamate receptors, or inhibition of acetylcholinesterase or protein synthesis. 6. Our results indicate that specific antigen challenge of isolated sympathetic ganglia activates resident mast cells to release substances that initiate a novel form of synaptic plasticity, an activity-independent and long-lasting increase in synaptic efficacy.

2019 ◽  
Author(s):  
Silvia Pelucchi ◽  
Lina Vandermeulen ◽  
Lara Pizzamiglio ◽  
Bahar Aksan ◽  
Jing Yan ◽  
...  

AbstractCofilin is one of the major regulators of actin dynamics in spines where it is required for structural synaptic plasticity. However, our knowledge of the mechanisms controlling Cofilin activity in spines remains still fragmented. Here, we describe the cyclase-associated protein 2 (CAP2) as a novel master regulator of Cofilin localization in spines. The formation of CAP2 dimers through its Cys32 is important for CAP2 binding to Cofilin and for normal spine actin turnover. The Cys32-dependent CAP2 homodimerization and association to Cofilin are triggered by long-term potentiation (LTP) and are required for LTP-induced Cofilin translocation into spines, spine remodeling and the potentiation of synaptic transmission. This mechanism is specifically affected in the hippocampus, but not in the superior frontal gyrus, of both Alzheimer’s Disease (AD) patients and APP/PS1 mice, where CAP2 is down-regulated and CAP2 dimer synaptic levels are reduced. In AD hippocampi, Cofilin preferentially associates with CAP2 monomer and is aberrantly localized in spines. Taken together, these results provide novel insights into structural plasticity mechanisms that are defective in AD.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Laura E Maglio ◽  
José A Noriega-Prieto ◽  
Irene B Maroto ◽  
Jesús Martin-Cortecero ◽  
Antonio Muñoz-Callejas ◽  
...  

Insulin-like growth factor-1 (IGF-1) plays a key role in synaptic plasticity, spatial learning and anxiety-like behavioral processes. While IGF-1 regulates neuronal firing and synaptic transmission in many areas of the central nervous system, its signaling and consequences on excitability, synaptic plasticity, and animal behavior dependent on the prefrontal cortex remain unexplored. Here, we show that IGF-1 induces a long-lasting depression of the medium and slow post-spike afterhyperpolarization (mAHP and sAHP), increasing the excitability of layer 5 pyramidal neurons of the rat infralimbic cortex. Besides, IGF-1 mediates a presynaptic long-term depression of both inhibitory and excitatory synaptic transmission in these neurons. The net effect of this IGF-1 mediated synaptic plasticity is a long-term potentiation of the postsynaptic potentials. Moreover, we demonstrate that IGF-1 favors the fear extinction memory. These results show novel functional consequences of IGF-1 signaling, revealing IGF-1 as a key element in the control of the fear extinction memory.


2020 ◽  
Vol 123 (2) ◽  
pp. 587-599 ◽  
Author(s):  
J. W. Crane ◽  
N. M. Holmes ◽  
J. Fam ◽  
R. F. Westbrook ◽  
A. J. Delaney

Oxytocin (OT) is a neuroactive peptide that influences the processing of fearful stimuli in the amygdala. In the central nucleus of the amygdala, the activation of OT receptors alters neural activity and ultimately suppresses the behavioral response to a fear conditioned stimulus. Receptors for OT are also found in the lateral amygdala (LA), and infusion of OT into the basolateral amygdala complex affects the formation and consolidation of fear memories. Yet, how OT receptor activation alters neurons and neural networks in the LA is unknown. In this study we used whole cell electrophysiological recordings to determine how OT-receptor activation changes synaptic transmission and synaptic plasticity in the LA of Sprague-Dawley rats. Our results demonstrate that OT-receptor activation results in a 200% increase in spontaneous inhibitory transmission in the LA that leads to the activation of presynaptic GABAB receptors. The activation of these receptors inhibits excitatory transmission in the LA, blocking long-term potentiation of cortical inputs onto LA neurons. Hence, this study provides the first demonstration that OT influences synaptic transmission and plasticity in the LA, revealing a mechanism that could explain how OT regulates the formation and consolidation of conditioned fear memories in the amygdala. NEW & NOTEWORTHY This study investigates modulation of synaptic transmission by oxytocin (OT) in the lateral amygdala (LA). We demonstrate that OT induces transient increases in spontaneous GABAergic transmission by activating interneurons in the basolateral amygdala. The resultant increase in GABA release in the LA activates presynaptic GABAB receptors on both inhibitory and excitatory inputs onto LA neurons, reducing release probability at these synapses. We subsequently demonstrate that OT modulates synaptic plasticity at cortical inputs to the LA.


2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


2006 ◽  
Vol 16 ◽  
pp. S52
Author(s):  
S. Salomon ◽  
Y. Nachum-Biala ◽  
Y. Bogush ◽  
M. Lineal ◽  
H. Matzner ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yire Jeong ◽  
Hye-Yeon Cho ◽  
Mujun Kim ◽  
Jung-Pyo Oh ◽  
Min Soo Kang ◽  
...  

AbstractMemory is supported by a specific collection of neurons distributed in broad brain areas, an engram. Despite recent advances in identifying an engram, how the engram is created during memory formation remains elusive. To explore the relation between a specific pattern of input activity and memory allocation, here we target a sparse subset of neurons in the auditory cortex and thalamus. The synaptic inputs from these neurons to the lateral amygdala (LA) are not potentiated by fear conditioning. Using an optogenetic priming stimulus, we manipulate these synapses to be potentiated by the learning. In this condition, fear memory is preferentially encoded in the manipulated cell ensembles. This change, however, is abolished with optical long-term depression (LTD) delivered shortly after training. Conversely, delivering optical long-term potentiation (LTP) alone shortly after fear conditioning is sufficient to induce the preferential memory encoding. These results suggest a synaptic plasticity-dependent competition rule underlying memory formation.


Hippocampus ◽  
1997 ◽  
Vol 7 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Tzu-Ping Yu ◽  
Jeffrey Fein ◽  
Tien Phan ◽  
Christopher J. Evans ◽  
Cui-Wei Xie

Sign in / Sign up

Export Citation Format

Share Document