Histamine depolarizes cholinergic septal neurons

1996 ◽  
Vol 75 (2) ◽  
pp. 707-714 ◽  
Author(s):  
N. Gorelova ◽  
P. B. Reiner

1. Bath application of 10 microM histamine (HA) resulted in a depolarization or inward current in 58/59 cholinergic neurons located in the medial septum and nucleus of the diagonal band of Broca (MS/DBB) in a slice preparation of rat brain. 2. In bridge mode, the histamine-induced depolarization consisted of both fast and slow phases; inward currents that followed the comparable time course were observed under voltage-clamp conditions. The fast depolarization was associated with variable changes in input resistance, while the slow depolarization always was associated with an increase in input resistance. 3. Both fast and slow responses persisted in the presence of tetrodotoxin (TTX), but only the fast response persisted when transmitter release was abolished by bathing the slice in either a low-Ca(2+)-, high-Mg(2+)-containing medium or one containing Cd2+. 4. When ramp voltage-clamp commands were applied during the fast depolarization, the resultant current-voltage (I-V) curves did not intersect over the range of membrane potentials from -130 to -30 mV. Ionic substitution experiments suggested that the bulk of the ionic current flowing during the fast depolarization was carried by sodium ions. 5. The I-V characteristics of the slow inward current identified it as a reduction in an inwardly rectifying potassium conductance. 6. The fast depolarization was significantly reduced by the H1 receptor antagonists pyrilamine and promethazine, but not by the H2 receptor antagonist cimetidine. Neither the H2 receptor agonist impromidine nor the H3 receptor agonist R-alpha-methylhistamine mimicked the response to HA. None of the agonists or antagonists had any observable effect upon the slow depolarization. 7. We conclude that HA directly depolarizes cholinergic MS/DBB neurons by acting as an H1 receptor, which primarily couples to an increase in a TTX-insensitive Na+ conductance. Additionally, HA evokes a slow depolarization mediated by a decrease in an inwardly rectifying potassium conductance but is not generated by activation of classically defined HA receptor subtypes.

1980 ◽  
Vol 238 (1) ◽  
pp. G50-G56
Author(s):  
S. J. Konturek ◽  
R. Siebers

Studies were conducted in conscious dogs implanted with monopolar silver electrodes along the small intestine to determine whether the intestinal motility response to histamine is mediated by H1-receptors alone or whether H2-receptors are also involved in the response. Histamine infusion alone induced a marked increase in the appearance rate and the propagation velocity of the interdigestive myoelectric complexes (IMC). This effect was reproduced by the administration of the selective H1-receptor agonist, 2-methylhistamine, and abolished by the H1-receptor antagonist, tripelennamine. Tripelennamine alone decreased the frequency of occurrence of the IMC in fasted animals and reduced significantly the spike potential activity of the small bowel in fed dogs. Neither the H2-receptor agonist, dimaprit, nor the H2-receptor antagonist, metiamide, had any influence on the motility patterns in fasted or fed animals. We conclude that histamine influences the patterns of small bowel motility via stimulation of H1-receptors but its physiological role in modulating intestinal motility remains to be determined.


1985 ◽  
Vol 53 (2) ◽  
pp. 590-602 ◽  
Author(s):  
J. P. Walsh ◽  
J. H. Byrne

Micropressure ejection of serotonin (5-hydroxytryptamine, 5-HT) produced excitatory responses in the L14 ink motor neurons of Aplysia that depended on the site of application. Ejection of 5-HT onto the cell body produced a slow response that showed variability in voltage sensitivity between preparations. In contrast, ejection of 5-HT onto the neuropil underneath the cell body produced a response whose amplitude was consistently a linear function of the holding potential, reversing near the predicted potassium equilibrium potential. Subsequent analyses focused on this second response. The neuropil response induced by 5-HT had a linear current-voltage relationship (reversing at ca. -80 mV), was associated with a decrease in input conductance, and was sensitive to changes in the concentration of extracellular K+. Serotonin application in artificial seawater (ASW) containing 30 mM K+ produced a response that reversed close to the altered Nernst potential for K+. The 5-HT response did not appear to be due to secondary activation of interneurons or to depend primarily on extracellular Ca2+, since ejection of 5-HT onto cells bathed in ASW containing 30 mM Co2+ produced responses comparable to, although somewhat attenuated from, those observed in ASW. Serotonin responses similar to those produced in ASW were obtained after perfusing the ganglion with ASW containing Co2+, 4-aminopyridine (4-AP), and tetraethylammonium (TEA). This suggests that the 5-HT-sensitive current is separate from the Ca2+-activated, fast, and delayed rectifying K+ currents. The 5-HT response appeared to be mediated by changes in levels of cAMP. Bath application of the phosphodiesterase inhibitors IBMX (3-isobutyl-1-methylxanthine) or Ro 20-1724, or the adenylate cyclase activator forskolin mimicked the 5-HT response by producing a slow inward current associated with a decrease in membrane conductance. Alteration of cellular cAMP metabolism modulated the response to 5-HT. Exposure of the ganglion to low concentrations of either Ro 20-1724 or forskolin potentiated the 5-HT response. Higher concentrations of these agents largely blocked the response to subsequent 5-HT applications. Bath application of the 8-bromo derivative of either cAMP or cGMP produced a slow inward current associated with a decrease in membrane conductance in cells voltage clamped at the resting potential. Responses to 5-HT were blocked, however, after exposure to 8-bromo-cAMP, but not to 8-bromo-cGMP. These results suggest that 5-HT produces a voltage-independent decrease in a steady-state potassium conductance that may be mediated by cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)


1982 ◽  
Vol 60 (9) ◽  
pp. 1153-1159 ◽  
Author(s):  
Y. Deslauriers ◽  
E. Ruiz-Ceretti ◽  
O. F. Schanne ◽  
M. D. Payet

The electrophysiologic effects of a toxic concentration of ouabain (10−5 M) were studied in frog atrial trabeculae. The toxic concentration was determined by the appearance of a negative inotropic effect and an increase in basal tension. Current- and voltage-clamp measurements were performed. Ouabain did not alter the passive electrical properties of the preparation. Under current-clamp conditions the membrane depolarized and the action potential amplitude as well as its maximum rate of rise decreased. The current–voltage curve for the fast inward current was shifted toward more positive potentials and the maximum sodium current decreased. The maximum sodium conductance was also reduced. The process of reactivation of the fast inward current was accelerated. The slow inward current and the maximum slow conductance also decreased under ouabain. These effects could explain the negative inotropic action of high concentrations of glycosides, as well as the action potential changes observed by several investigators. They also help to understand the arrhythmogenic effects of high concentrations of digitalis.


1987 ◽  
Vol 58 (5) ◽  
pp. 909-921 ◽  
Author(s):  
D. P. Lotshaw ◽  
I. B. Levitan

1. The effect of serotonin (5-HT) and forskolin on an inwardly rectifying K+ conductance (IKR) was studied using voltage-clamp techniques in several identified Aplysia neurons isolated and maintained in primary cell culture. 2. Inward rectification was observed in the current-voltage relationship of the identified neurons R15, R2, B1, and B2 and was predominately due to IKR, as demonstrated by the dependence of inward rectification on the extracellular K+ concentration, instantaneous kinetics of the membrane current response to hyperpolarizing voltage clamp pulses, and voltage-dependent Ba2+ block of the inwardly rectifying current. 3. 5-HT increased IKR conductance between 100 and 400% in the identified neuron R15 in culture and increased IKR conductance approximately 50% in the identified neurons B1, B2, and R2 in culture. The adenylate cyclase activator, forskolin, plus a phosphodiesterase inhibitor, Ro 20-1724, also increased IKR conductance in these neurons. 4. 5-HT and forskolin modulated other ion conductances as well in all of these cultured neurons.


1982 ◽  
Vol 37 (10) ◽  
pp. 1015-1022 ◽  
Author(s):  
J. Wiemer ◽  
R. Ziskoven ◽  
C. Achenbach

To conclude our investigation of thallium effects on cardiac tissues, we studied the slow inward current of sheep cardiac Purkinje fibres exposed to 10-7 to 10-5 ᴍ Tl+ for extended periods of up to 80 min. Our previous results had suggested a possible involvement of the slow inward current during thallium intoxication: a) the modification of contractility staircases observed during thallium exposure, b) action potential recordings of ventricular muscle, c) changes in spontaneous beating in sino-atrial preparations. The thallium levels chosen were between those yielding strong positive inotropic transients and those producing a marked long­term decay of contraction force.The slow inward current was measured using a conventional two-microelectrode-technique and the standard voltage clamp protocol for this current system. The experimental work was restricted to the determination of d∞, the kinetics of activation of the slow inward current and of īsi, the current voltage relation of the current system. This was necessary since the effects of thallium were known to be short-lived and therefore frequent repeat runs of the voltage clamp program had to be performed in order to obtain the time courses of possible transient changes.The results showed that the slow inward current was first increased and then declined at the low concentration of 10-7 ᴍ Tl+. At 10-5 m Tl+ the initial increase was smaller, whereas the decay of the slow inward current proceeded to lower values. Comparison with contractility measure­ments at the same concentrations of thallium showed a distinct parallelism between changes of the slow inward current and myocardial contractility. Despite this apparent relationship, we do not conclude that the contractile events are primarily a result of changes of the slow inward current, since thallium does not seem to specifically alter the parameters of the slow inward current at the membrane level.


1980 ◽  
Vol 31 (2) ◽  
pp. 589-595 ◽  
Author(s):  
M. GYENES ◽  
A. A. BULYCHEV ◽  
G. A. KURELLA

1995 ◽  
Vol 74 (6) ◽  
pp. 2366-2378 ◽  
Author(s):  
N. C. Harris ◽  
A. Constanti

1. The effects of the novel bradycardic agent 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD 7288) (Zeneca) were investigated on the hyperpolarization-activated cationic current (Ih) in guinea pig substantia nigra pars compacta neurons in vitro, using a single-microelectrode current-clamp/voltage-clamp technique. 2. Under current-clamp conditions, injection of large negative current pulses (0.1-0.5 nA, 400 ms) evoked a slow depolarizing "sag" in the electrotonic potential due to activation of the slow inward (anomalous) rectifier. In voltage-clamp recordings, hyperpolarizing voltage steps from a holding potential of -60 mV (close to resting potential) elicited slow inward current relaxations with kinetic properties similar to those seen for other neuronal Ihs. 3. ZD 7288 (10-100 microM) produced a consistent abolition of the electrotonic potential sag with no effect on membrane potential or spike properties. Under voltage clamp, Ih amplitude was clearly reduced in a time- and concentration-dependent manner (apparent half-maximum blocking concentration = 2 microM); full block of Ih was typically achieved after 10-15 min of exposure to 50 microM ZD 7288, with no significant recovery observed after 1 h of washing. 4. A similar (although more rapid) block of Ih was seen after application of 3-5 mM Cs+ (partially reversible after 30 min of washing). 5. Partial block of Ih by 10 microM ZD 7288 was accompanied by a reduction in the maximum amplitude of the Ih activation curve, a small negative shift in its position on the voltage axis, and a linearization of the steady-state current-voltage relationship. The estimated Ih reversal potential, however, remained unaffected. 6. In 10 microM ZD 7288, the time course of Ih activation and deactivation was significantly slowed (within the range of -70 to -120 mV for the activation time constant and -70 to -90 mV for the inactivation time constant). 7. Blockade of Ih by ZD 7288 or Cs+ was independent of prior Ih activation (i.e., non-use dependent). 8. Intracellular loading with ZD 7288 also abolished the sag in the electrotonic voltage response and Ih relaxations, suggesting an intracellular site of action. By contrast, intracellular Cs+ had no effect on Ih properties. 9. Block of Ih by ZD 7288 (but not Cs+) was relieved by prolonged cell hyperpolarization, manifested as a slowly developing (half-time approximately 20 s) inward current at a holding potential of -100 mV. 10. We propose that ZD 7288, when applied externally, may behave as a "lipophilic" quaternary cation, capable of passing into the cell interior to block Ih channels in their closed state; this compound may thus prove a useful research tool, in place of Cs+, for studying the properties and significance of Ih currents in controlling neuronal function.


1985 ◽  
Vol 63 (9) ◽  
pp. 1065-1069 ◽  
Author(s):  
Julio L. Alvarez ◽  
Miguel Garcia ◽  
Francisco R. Dorticós ◽  
Jesús A. Morlans

The effects of MnCl2 on outward currents in frog atrial muscle were investigated under voltage-clamp conditions. MnCl2 (3 mmol/L), which completely abolished the slow inward current, produced a decrease in the outward background current (Ib) at potentials positive to −50 mV. The delayed outward current (Ix, time dependent) was not altered by Mn. "Isochronic activation curves" for Ix and decay of current tails at −40 mV remained unaffected after Mn. Effects on Ib probably reflect a decrease in [Formula: see text] related to the decrease in Ca influx as well as a reduction in the Na–Ca exchange current.


Sign in / Sign up

Export Citation Format

Share Document