Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area

1996 ◽  
Vol 76 (5) ◽  
pp. 2841-2852 ◽  
Author(s):  
C. L. Colby ◽  
J. R. Duhamel ◽  
M. E. Goldberg

1. Posterior parietal cortex contains neurons that are visually responsive and active in relation to saccadic eye movements. We recorded from single neurons in a subregion of parietal cortex, the lateral intraparietal area (LIP), in alert rhesus monkeys. To characterize more completely the circumstances under which LIP neurons are responsive, we used five tasks designed to test the impact of sensory, motor, and cognitive factors. We obtained quantitative data in multiple tasks in 91 neurons. We measured neural activity during central fixation and in relation to stimulus onset and saccade onset. 2. LIP neurons have visual responses to the onset of a stationary stimulus in the receptive field. These visual responses occurred both in tasks that require a subsequent eye movement toward the stimulus and in tasks in which eye movements are not permitted, indicating that this activity is sensory rather than presaccadic. 3. Visual responses were enhanced when the monkey had to use information provided by the stimulus to guide its behavior. The amplitude of the sensory response to a given stimulus was increased in a task in which the monkey would subsequently make a saccade to the location signaled by the stimulus, as compared with the amplitude of the visual response in a simple fixation task. 4. The visual response was also enhanced when the monkey attended to the stimulus without looking at it. This result shows that enhancement does not reflect saccade preparation because the response is enhanced even when the monkey is not permitted to make a saccade. Instead, enhancement reflects the allocation of attention to the spatial locus of the receptive field. 5. Many LIP neurons had saccade-related activity in addition to their visual responses. The visual response for most neurons was stronger than the saccade-related activation. 6. Saccade-related activity was independent of visual activity. Similar presaccadic activity was observed in trials that included a recent visual stimulus (memory-guided saccade task) and in trials with no visual stimulus (learned saccade task). 7. We observed increases in activity during fixation in tasks in which the monkey could anticipate the onset of a behaviorally significant stimulus. LIP neurons usually showed low levels of background firing in the fixation task during the period before stimulus onset. This background activity was increased in the peripheral attention and memory-guided saccade tasks during the period when the monkey was waiting for a behaviorally relevant stimulus to appear. 8. The results from these several tasks indicate that LIP neurons are activated in a variety of circumstances and are not involved exclusively in sensory processing or motor planning. The modulation of sensory responses by attention and anticipation suggests that cognitive factors play a major role in parietal function.

2000 ◽  
Vol 84 (2) ◽  
pp. 677-692 ◽  
Author(s):  
Kae Nakamura ◽  
Carol L. Colby

Area V3A is an extrastriate visual area that provides a major input to parietal cortex. To identify the sensory, saccade-related, and cognitive signals carried by V3A neurons, we recorded from single units in alert monkeys during performance of fixation and memory guided saccade tasks. We found that visual responses to stationary stimuli in area V3A were affected by the behavioral relevance of the stimulus. The amplitude of the visual response differed between the memory-guided saccade task, in which the monkey had to use the information provided by the stimulus to guide its behavior, and the fixation task. For 18% (29/163) of V3A neurons, the response was significantly enhanced in the memory-guided saccade task as compared with that in the fixation task. For 8% (13/163) of V3A neurons, the amplitude of response in the memory-guided saccade task was significantly suppressed. We also observed task-related modulation of activity prior to stimulus onset. Among the V3A neurons (37/163) that showed significant differences between tasks in prestimulus activity, the majority (89%; 33/37) showed greater prestimulus activity in the memory-guided saccade task. Task-related increases in prestimulus activity in the memory-guided saccade task were not always matched by increases in the sensory response, indicating that visual responses and prestimulus activity can be modulated independently. Activity in the memory period was suppressed compared with prestimulus activity for 83% (49/59) of the V3A neurons that showed a significant difference in activity (59/197) between these two epochs. For some neurons, memory-period activity dropped even below the baseline level in the fixation task, indicating that there may be an active suppression mechanism. Many V3A neurons (75%, 148/197) also had activity in the saccade epoch. This activity was most prominent immediately after the saccade. Postsaccadic activity was observed even when testing was carried out in total darkness, indicating that this activity reflects, at least in part, extraretinal signals and is not simply a response to visual reafference. These results indicate that several kinds of signals are carried by single neurons in extrastriate area V3A. Moreover, activity in V3A is subject to modulation by extraretinal factors, including attention, anticipation, memory, and saccadic eye movements.


2005 ◽  
Vol 94 (4) ◽  
pp. 2491-2503 ◽  
Author(s):  
Keith A. Schneider ◽  
Sabine Kastner

The superior colliculus (SC) is a multimodal laminar structure located on the roof of the brain stem. The SC is a key structure in a distributed network of areas that mediate saccadic eye movements and shifts of attention across the visual field and has been extensively studied in nonhuman primates. In humans, it has proven difficult to study the SC with functional MRI (fMRI) because of its small size, deep location, and proximity to pulsating vascular structures. Here, we performed a series of high-resolution fMRI studies at 3 T to investigate basic visual response properties of the SC. The retinotopic organization of the SC was determined using the traveling wave method with flickering checkerboard stimuli presented at different polar angles and eccentricities. SC activations were confined to stimulation of the contralateral hemifield. Although a detailed retinotopic map was not observed, across subjects, the upper and lower visual fields were represented medially and laterally, respectively. Responses were dominantly evoked by stimuli presented along the horizontal meridian of the visual field. We also measured the sensitivity of the SC to luminance contrast, which has not been previously reported in primates. SC responses were nearly saturated by low contrast stimuli and showed only small response modulation with higher contrast stimuli, indicating high sensitivity to stimulus contrast. Responsiveness to stimulus motion in the SC was shown by robust activations evoked by moving versus static dot stimuli that could not be attributed to eye movements. The responses to contrast and motion stimuli were compared with those in the human lateral geniculate nucleus. Our results provide first insights into basic visual responses of the human SC and show the feasibility of studying subcortical structures using high-resolution fMRI.


1983 ◽  
Vol 50 (6) ◽  
pp. 1415-1432 ◽  
Author(s):  
B. J. Richmond ◽  
R. H. Wurtz ◽  
T. Sato

We studied the responses to visual stimuli of neurons in area TE of the inferior temporal (IT) cortex in four awake monkeys (Macaca mulatta) trained to perform behavioral tasks. While the monkey looked at a fixation point in order to detect its dimming, another stimulus, such as a spot of light or a sine- or square-wave grating, usually produced only slight responses in inferior temporal neurons. However, the response to the stimulus was more vigorous if the task was changed so the fixation point blinked off before the stimulus came on while the monkey maintained its gaze. Responses to visual stimuli during this blink task were seen in 199 of 288 cells studied, and nearly all responded to a visual stimulus better during the blink task than during the task in which the fixation point remained on. Small spots of light usually produced consistent responses; we did not explore the response to complex stimuli or to objects. Latency of the visual response ranged from 70 to 220 ms. While the response of cells to a stimulus in the presence of the fixation point was limited to areas near the fovea, this apparently constricted visual receptive field expanded during the blink of the fixation point. In order to determine whether the increased response of the cell in the absence of the fixation point was due to a shift of attention from the fixation point to the visual stimulus, we required the monkey to respond to the dimming of this stimulus rather than to the dimming of the fixation point. We found that attention to the visual stimulus decreased the response of the cell during both the fixation and blink tasks. That is, the best response to the stimulus occurred in the blink task when attention to the stimulus was not required, while the poorest response occurred in the fixation task when attention to the stimulus was required. The reappearance of the fixation point during stimulus presentation in the blink task caused a transient time-locked suppression of response to the stimulus. This suggests that the reduction of response to the stimulus in the presence of the fixation point is caused by an interaction between the responses to the fixation point and the visual stimulus. To insure that we were recording from the same population of cells that had first been characterized by Gross, Rocha-Miranda, and Bender (14) in anesthetized, paralyzed monkeys, we recorded under those same conditions in two of our four monkeys.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 87 (2) ◽  
pp. 845-858 ◽  
Author(s):  
Stefano Ferraina ◽  
Martin Paré ◽  
Robert H. Wurtz

Many neurons in the frontal eye field (FEF) and lateral intraparietal (LIP) areas of cerebral cortex are active during the visual-motor events preceding the initiation of saccadic eye movements: they respond to visual targets, increase their activity before saccades, and maintain their activity during intervening delay periods. Previous experiments have shown that the output neurons from both LIP and FEF convey the full range of these activities to the superior colliculus (SC) in the brain stem. These areas of cerebral cortex also have strong interconnections, but what signals they convey remains unknown. To determine what these cortico-cortical signals are, we identified the LIP neurons that project to FEF by antidromic activation, and we studied their activity during a delayed-saccade task. We then compared these cortico-cortical signals to those sent subcortically by also identifying the LIP neurons that project to the intermediate layers of the SC. Of 329 FEF projection neurons and 120 SC projection neurons, none were co-activated by both FEF and SC stimulation. FEF projection neurons were encountered more superficially in LIP than SC projection neurons, which is consistent with the anatomical projection of many cortical layer III neurons to other cortical areas and of layer V neurons to subcortical structures. The estimated conduction velocities of FEF projection neurons (16.7 m/s) were significantly slower that those of SC projection neurons (21.7 m/s), indicating that FEF projection neurons have smaller axons. We identified three main differences in the discharge properties of FEF and SC projection neurons: only 44% of the FEF projection neurons changed their activity during the delayed-saccade task compared with 69% of the SC projection neurons; only 17% of the task-related FEF projection neurons showed saccadic activity, whereas 42% of the SC projection neurons showed such increases; 78% of the FEF projection neurons had a visual response but no saccadic activity, whereas only 55% of the SC projection neurons had similar activity. The FEF and SC projection neurons had three similarities: both had visual, delay, and saccadic activity, both had stronger delay and saccadic activity with visually guided than with memory-guided saccades, and both had broadly tuned responses for disparity stimuli, suggesting that their visual receptive fields have a three-dimensional configuration. These observations indicate that the activity carried between parietal and frontal cortical areas conveys a spectrum of signals but that the preponderance of activity conveyed might be more closely related to earlier visual processing than to the later saccadic stages that are directed to the SC.


1989 ◽  
Vol 61 (5) ◽  
pp. 1064-1084 ◽  
Author(s):  
R. A. Boch ◽  
M. E. Goldberg

1. We recorded from 257 neurons in the banks of the posterior third of the principal sulcus of two rhesus monkeys trained to look at a fixation point and make saccades to stimuli in the visual periphery. Sixty-six percent (220/257) discharged or were suppressed in association with one or more aspects of the tasks we used. 2. Fifty-eight percent (151/257) of the neurons responded to the appearance of a spot of light in some part of the contralateral visual field. Cells did not seem to have absolute requirements for stimulus shape, size, or direction of motion. 3. Thirty-six percent (29/79) of visually responsive neurons tested quantitatively gave an enhanced response to the stimulus in the receptive field when the monkey had to make a saccade to the stimulus when its appearance was synchronous with the disappearance of the fixation point (synchron task). Twenty-nine percent (19/57) of the neurons gave an enhanced response to the stimulus when the monkey had to make a saccade to the stimulus some time after it appeared (delayed-saccade task). In general, enhancement in the synchron task correlated well with enhancement in the delayed-saccade task. 4. Enhancement was spatially specific. It did not occur when the monkey made a saccade to a stimulus outside the receptive field even though there was a stimulus within the receptive field. 5. Twenty-three percent (27/117) of neurons studied in the delayed-saccade task gave two bursts, one at the appearance of the stimulus and a second one around the saccade. This second burst generally did not occur when the monkey made the same saccade to a remembered target, but instead required the presence of the visual stimulus, and so we describe it as a reactivation of the visual response. Reactivation was also spatially specific. 6. The latency from reactivation to the beginning of the saccade ranged from 160 ms before the saccade to the beginning of the saccade. Reactivation usually continued for several hundred milliseconds after the saccade, sometimes for the duration of the trial. 7. Reactivation and enhancement are not the same mechanism. Although some cells showed both phenomena there was no correlation between enhancement and reactivation. 8. Cells that showed reactivation in the saccade task also showed reactivation at a weaker level in a suppressed-saccade task. In this task the monkeys had to hold fixation despite the disappearance of the fixation point and the continued presence of the peripheral stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 82 (1) ◽  
pp. 343-358 ◽  
Author(s):  
Jennifer F. Linden ◽  
Alexander Grunewald ◽  
Richard A. Andersen

The lateral intraparietal area (LIP), a region of posterior parietal cortex, was once thought to be unresponsive to auditory stimulation. However, recent reports have indicated that neurons in area LIP respond to auditory stimuli during an auditory-saccade task. To what extent are auditory responses in area LIP dependent on the performance of an auditory-saccade task? To address this question, recordings were made from 160 LIP neurons in two monkeys while the animals performed auditory and visual memory-saccade and fixation tasks. Responses to auditory stimuli were significantly stronger during the memory-saccade task than during the fixation task, whereas responses to visual stimuli were not. Moreover, neurons responsive to auditory stimuli tended also to be visually responsive and to exhibit delay or saccade activity in the memory-saccade task. These results indicate that, in general, auditory responses in area LIP are modulated by behavioral context, are associated with visual responses, and are predictive of delay or saccade activity. Responses to auditory stimuli in area LIP may therefore be best interpreted as supramodal responses, and similar in nature to the delay activity, rather than as modality-specific sensory responses. The apparent link between auditory activity and oculomotor behavior suggests that the behavioral modulation of responses to auditory stimuli in area LIP reflects the selection of auditory stimuli as targets for eye movements.


2001 ◽  
Vol 86 (5) ◽  
pp. 2629-2633 ◽  
Author(s):  
Richard J. Krauzlis

The intermediate and deep layers of the monkey superior colliculus (SC) are known to be important for the generation of saccadic eye movements. Recent studies have also provided evidence that the rostral SC might be involved in the control of pursuit eye movements. However, because rostral SC neurons respond to visual stimuli used to guide pursuit, it is also possible that the pursuit-related activity is simply a visual response. To test this possibility, we recorded the activity of neurons in the rostral SC as monkeys smoothly pursued a target that was briefly extinguished. We found that almost all rostral SC neurons in our sample maintained their pursuit-related activity during a brief visual blink, which was similar to the maintained activity they also exhibited during blinks imposed during fixation. These results indicate that discharge of rostral SC neurons during pursuit is not simply a visual response, but includes extraretinal signals.


2000 ◽  
Vol 83 (5) ◽  
pp. 2580-2601 ◽  
Author(s):  
Akira Murata ◽  
Vittorio Gallese ◽  
Giuseppe Luppino ◽  
Masakazu Kaseda ◽  
Hideo Sakata

In this study, we mainly investigated the visual selectivity of hand-manipulation-related neurons in the anterior intraparietal area (area AIP) while the animal was grasping or fixating on three-dimensional (3D) objects of different geometric shapes, sizes, and orientations. We studied the activity of 132 task-related neurons during the hand-manipulation tasks in the light and in the dark, as well as during object fixation. Seventy-seven percent (101/132) of the hand-manipulation-related neurons were visually responsive, showing either lesser activity during manipulation in the dark than during that in the light (visual-motor neurons) or no activation in the dark (visual-dominant neurons). Of these visually responsive neurons, more than half ( n = 66) responded during the object-fixation task (object-type). Among these, 55 were tested for their shape selectivity during the object-fixation task, and many ( n = 25) were highly selective, preferring one particular shape of the six different shapes presented (ring, cube, cylinder, cone, sphere, and square plate). For 28 moderately selective object-type neurons, we performed multidimensional scaling (MDS) to examine how the neurons encode the similarity of objects. The results suggest that some moderately selective neurons responded preferentially to common geometric features shared by similar objects (flat, round, elongated, etc.). Moderately selective nonobject-type visually responsive neurons, which did not respond during object fixation, were found by MDS to be more closely related to the handgrip than to the object shape. We found a similar selectivity for handgrip in motor-dominant neurons that did not show any visual response. With regard to the size of the objects, 16 of 26 object-type neurons tested were selective for both size and shape, whereas 9 object-type neurons were selective for shape but not for size. Seven of 12 nonobject-type and all (8/8) of the motor-dominant neurons examined were selective for size, and almost all of them were also selective for objects. Many hand-manipulation-related neurons that preferred the plate and/or ring were selective for the orientation of the objects (17/20). These results suggest that the visual responses of object-type neurons represent the shape, size, and/or orientation of 3D objects, whereas those of the nonobject-type neurons probably represent the shape of the handgrip, grip size, or hand-orientation. The activity of motor-dominant neurons was also, in part, likely to represent these parameters of hand movement. This suggests that the dorsal visual pathway is concerned with the aspect of form, orientation, and/or size perception that is relevant for the visual control of movements.


1985 ◽  
Vol 54 (4) ◽  
pp. 867-886 ◽  
Author(s):  
S. E. Petersen ◽  
D. L. Robinson ◽  
W. Keys

We have examined the properties of neurons in three subdivisions of the pulvinar of alert, trained rhesus monkeys 1) an inferior, retinotopically mapped area (PI), 2) a lateral, retinotopically organized region (PL), and 3) a dorsomedial visual portion of the lateral pulvinar (Pdm), which has a crude retinotopic organization. We tested the neurons for visual responses to stationary and moving stimuli and for changes in these responses produced by behavioral manipulations. All areas contain cells sensitive to stimulus orientation as well as neurons selective for the direction of stimulus movement; however, the majority of cells in all three regions are either broadly tuned or nonselective for these attributes. Nearly all cells respond to stimulus onset, a significant number also give a response to stimulus termination, and rarely a cell gives only off responses. Nearly all cells increase their discharge rate to visual stimuli. Receptive fields in the two retinotopically mapped regions, PI and PL, have well-defined borders. The sizes of these receptive fields show a positive correlation with the eccentricity of the receptive fields. The receptive fields in the remaining region, Pdm, are frequently very large, but with these large fields excluded, show a similar correlation with eccentricity. All pulvinar cells tested (n = 20) were mapped in retinal coordinates; the receptive fields are positioned in relation to the retina. We found no cells with gaze-gated characteristics (2), nor cells mapped in a spatial coordinate system. The response latencies in PI and PL are shorter and less variable than the latencies in Pdm. Active use of a stimulus can produce an enhancement or attenuation of the visual response. Eye-movement modulation was found in all three subdivisions in about equal frequencies. Attentional modulation was common in Pdm and was rare in PI and PL. The modulation is spatially selective in Pdm and nonselective in PI for a small number of tested cells. These data demonstrate functional differences between Pdm and the other two areas and suggest that Pdm plays a role in selective visual attention, whereas PI and PL probably contribute to other aspects of visual perception.


1976 ◽  
Vol 39 (4) ◽  
pp. 745-765 ◽  
Author(s):  
R. H. Wurtz ◽  
C. W. Mohler

1. Cells in the superficial layers of monkey superior colliculus respond more vigorously to a spot of light falling in their receptive fields when the monkey uses that spot of light as the target for a saccadic eye movement. Our purpose in these experiments was to investigate the characteristics of this enhancement effect. While monkeys fixated, we determined the response of a cell to a stimulus falling in its receptive field. Then we determined the response of the cell to the same stimulus when the monkey made a saccade to the stimulus or near to it. 2. The enhancement of the visual response is spatially limited. The receptive field of a cell always shows enhancement throughout its extent and frequently shows a slight expansion. Saccades made near to a stimulus in the visual receptive field, but not to it, also lead to an enhancement of that visual stimulus; an area around the excitatory center of the receptive field where such enhancement occurs was referred to as the enhancement field of the cell. An enhanced response in one part of the visual field was not accompanied by depressed responses associated with saccades to other parts of the visual field. 3. The enhancement effect is temporally limited; it begins 200-300 ms before the eye movement, as determined by the increasing response to 50-ms light pulses presented at varying intervals before the eye movement. The degree of enhancement intensifies when the visual stimulus is turned on closer in time to the onset of the saccade. A buildup of the enhancement also occurs on successive trials as does the response of eye movement-related cells in the intermediate layers. 4. The enhancement response is not present in the upper quarter-millimeter of the superficial layers, suggesting that the effect is not present in retinal afferents which terminate primarily in this area of the superficial layers. The enhancement effect is seen throughout the visual field; the foveal area was not tested. 5. In order to determine the relation of the enhancement effect to the monkey's behavioral response, we required the monkey to make a hand response rather than an eye movement-response to the visual stimuli. Cells did not show a clear enhancement with such a hand response. Results of these experiments indicate that the enhancement effect is dependent on the type of response the monkey makes to the stimulus and is probably specifically related to eye movements. Since the enhancement of visual response seems likely to be related specifically to eye movements both on physiological and behavioral grounds, the response-free term "attention" is probably inappropriate for the phenomenon. 6. The hypothesis advanced in the preceding paper that eye movement-related activity from intermediate and deep colliculus layers is directed upward to converge with visually related activity in the superficial layers is extended to include an input from cells in these deeper layers (or their afferents) to the superficial layer cells...


Sign in / Sign up

Export Citation Format

Share Document