Late Sodium Channel Openings Underlying Epileptiform Activity Are Preferentially Diminished by the Anticonvulsant Phenytoin

1997 ◽  
Vol 77 (6) ◽  
pp. 3021-3034 ◽  
Author(s):  
Michael M. Segal ◽  
Andrea F. Douglas

Segal, Michael M. and Andrea F. Douglas. Late sodium channel openings underlying epileptiform activity are preferentially diminished by the anticonvulsant phenytoin. J. Neurophysiol. 77: 3021–3034, 1997. Late openings of sodium channels were observed in outside-out patch recordings from hippocampal neurons in culture. In previous studies of such neurons, a persistent sodium current appeared to underlie the ictal epileptiform activity. All the channel currents were blocked by tetrodotoxin. In addition to the transient openings of sodium channels making up the peak sodium current, there were two types of late channel openings: brief late and burst openings. These late channel openings occurred throughout voltage pulses that lasted 750 ms, producing a persistent sodium current. At −30 mV, this current was 0.4% of the peak current. The late channel openings occurred throughout the physiological range of trans-membrane voltages. The anticonvulsant phenytoin reduced the late channel openings more than the peak currents. The effect on the persistent current was greatest at more depolarized voltages, whereas the effect on peak currents was not substantially voltage dependent. In the presence of 60 μM phenytoin, peak sodium currents at −30 mV were 40–41% of control, as calculated using different methods of analysis. Late currents were 22–24% of control. Phenytoin primarily decreased the number of channel openings, with less effect on the duration of channel openings and no effect on open channel current. This set of findings is consistent with models in which phenytoin binds to the inactivated state of the channel. The preferential effect of phenytoin on the persistent sodium current suggests that an important pharmacological mechanism for a sodium channel anticonvulsant is to reduce late openings of sodium channels, rather than reducing all sodium channel openings. We hypothesize that pharmacological interventions that are most selective in reducing late openings of sodium channels, while leaving early channel openings relatively intact, will be those that produce an anticonvulsant effect while interfering minimally with normal function.

1978 ◽  
Vol 71 (3) ◽  
pp. 227-247 ◽  
Author(s):  
G S Oxford ◽  
C H Wu ◽  
T Narahashi

The group-specific protein reagents, N-bromacetamide (NBA) and N-bromosuccinimide (NBS), modify sodium channel gating when perfused inside squid axons. The normal fast inactivation of sodium channels is irreversibly destroyed by 1 mM NBA or NBS near neutral pH. NBA apparently exhibits an all-or-none destruction of the inactivation process at the single channel level in a manner similar to internal perfusion of Pronase. Despite the complete removal of inactivation by NBA, the voltage-dependent activation of sodium channels remains unaltered as determined by (a) sodium current turn-on kinetics, (b) sodium tail current kinetics, (c) voltage dependence of steady-state activation, and (d) sensitivity of sodium channels to external calcium concentration. NBA and NBS, which can cleave peptide bonds only at tryptophan, tyrosine, or histidine residues and can oxidize sulfur-containing amino acids, were directly compared with regard to effects on sodium inactivation to several other reagents exhibiting overlapping protein reactivity spectra. N-acetylimidazole, a tyrosine-specific reagent, was the only other compound examined capable of partially mimicking NBA. Our results are consistent with recent models of sodium inactivation and support the involvement of a tyrosine residue in the inactivation gating structure of the sodium channel.


2003 ◽  
Vol 90 (3) ◽  
pp. 1635-1642 ◽  
Author(s):  
Ilya A. Rybak ◽  
Krzysztof Ptak ◽  
Natalia A. Shevtsova ◽  
Donald R. McCrimmon

Rapidly inactivating and persistent sodium currents have been characterized in acutely dissociated neurons from the area of rostroventrolateral medulla that included the pre-Bötzinger Complex. As demonstrated in many studies in vitro, this area can generate endogenous rhythmic bursting activity. Experiments were performed on neonate and young rats (P1-15). Neurons were investigated using the whole cell voltage-clamp technique. Standard activation and inactivation protocols were used to characterize the steady-state and kinetic properties of the rapidly inactivating sodium current. Slow depolarizing ramp protocols were used to characterize the noninactivating sodium current. The “window” component of the rapidly inactivating sodium current was calculated using mathematical modeling. The persistent sodium current was revealed by subtraction of the window current from the total noninactivating sodium current. Our results provide evidence of the presence of persistent sodium currents in neurons of the rat rostroventrolateral medulla and determine voltage-gated characteristics of activation and inactivation of rapidly inactivating and persistent sodium channels in these neurons.


1995 ◽  
Vol 12 (5) ◽  
pp. 1001-1005 ◽  
Author(s):  
Heather Dawes ◽  
Gail Mandel ◽  
Gary Matthews

AbstractRecent electrophysiological experiments have shown that retinal pigment epithelium (RPE) cells begin to produce neuronal-type voltage-dependent sodium currents when placed in dissociated cell culture. In this study, the sodium channel types induced in cultured rat RPE cells were identified. Sodium channel mRNAs encoding two distinct alpha subunits were detected in the cultured RPE cells, brain type II/IIA, and a novel rat mRNA which we have termed RET1. These two sodium channel types may correspond to the TTX-sensitive and TTX-insensitive components of sodium current reported previously in cultured rat RPE cells.


1984 ◽  
Vol 83 (2) ◽  
pp. 133-142 ◽  
Author(s):  
I Llano ◽  
F Bezanilla

Patch pipettes were used to record the current arising from small populations of sodium channels in voltage-clamped cut-open squid axons. The current fluctuations associated with the time-variant sodium conductance were analyzed with nonstationary statistical techniques in order to obtain an estimate for the conductance of a single sodium channel. The results presented support the notion that the open sodium channel in the squid axon has only one value of conductance, 3.5 pS.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Franklin F. F. Nóbrega ◽  
Mirian G. S. S. Salvadori ◽  
Cintia J. Masson ◽  
Carlos F. Mello ◽  
Tiago S. Nascimento ◽  
...  

Terpinen-4-ol (4TRP) is a monoterpenoid alcoholic component of essential oils obtained from several aromatic plants. We investigated the psychopharmacological and electrophysiological activities of 4TRP in male Swiss mice and Wistar rats. 4TRP was administered intraperitoneally (i.p.) at doses of 25 to 200 mg/kg and intracerebroventricularly (i.c.v.) at concentrations of 10, 20, and 40 ng/2 μL. For in vitro experiments, 4TRP concentrations were 0.1 mM and 1.0 mM. 4TRP (i.p.) inhibited pentylenetetrazol- (PTZ-) induced seizures, indicating anticonvulsant effects. Electroencephalographic recordings showed that 4TRP (i.c.v.) protected against PTZ-induced seizures, corroborating the behavioural results. To determine whether 4TRP exerts anticonvulsant effects via regulation of GABAergic neurotransmission, we measured convulsions induced by 3-mercapto-propionic acid (3-MP). The obtained results showed involvement of the GABAergic system in the anticonvulsant action exerted by 4TRP, but flumazenil, a selective antagonist of the benzodiazepine site of theGABAAreceptor, did not reverse the anticonvulsant effect, demonstrating that 4TRP does not bind to the benzodiazepine-binding site. Furthermore, 4TRP decreased the sodium current through voltage-dependent sodium channels, and thus its anticonvulsant effect may be related to changes in neuronal excitability because of modulation of these channels.


2004 ◽  
Vol 47 (7) ◽  
pp. 1102-1112 ◽  
Author(s):  
Christina Remy ◽  
Stefan Remy ◽  
Heinz Beck ◽  
Dieter Swandulla ◽  
Michael Hans

PLoS Biology ◽  
2018 ◽  
Vol 16 (3) ◽  
pp. e2004892 ◽  
Author(s):  
Ammon Thompson ◽  
Daniel T. Infield ◽  
Adam R. Smith ◽  
G. Troy Smith ◽  
Christopher A. Ahern ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document