scholarly journals Viewer-Centered Frame of Reference for Pointing to Memorized Targets in Three-Dimensional Space

1997 ◽  
Vol 78 (3) ◽  
pp. 1601-1618 ◽  
Author(s):  
J. McIntyre ◽  
F. Stratta ◽  
F. Lacquaniti

McIntyre, J., F. Stratta, and F. Lacquaniti. Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space. J. Neurophysiol. 78: 1601–1618, 1997. Pointing to a remembered visual target involves the transformation of binocular visual information into an appropriate motor output. Errors generated during pointing tasks may indicate the reference frames used by the CNS for the transformation and storage of the target position. Previous studies have proposed eye-, shoulder-, or hand-centered reference frames for various pointing tasks, depending on visual conditions. We asked subjects to perform pointing movements to remembered three-dimensional targets after a fixed memory delay. Pointing movements were executed under dim lighting conditions, allowing vision of the fingertip against a uniform black background. Subjects performed repeated movements to targets distributed uniformly within a small (radius 25 mm) workspace volume. In separate blocks of trials, subjects pointed to different workspace regions that varied in terms of distance and direction from the head and shoulder. Additional blocks were performed that differed in terms of starting position, effector hand, head rotation, and memory delay duration. Final pointing positions were quantified in terms of the constant and variable errors in three dimensions. The orientation of these errors was examined as a function of workspace location to identify the underlying reference frames. Subjects produced anisotropic patterns of variable error, with greater variability for endpoint distances from the body. The major axes of the variable-error tolerance ellipsoids pointed toward the eyes of the subject, independent of workspace region, effector hand (left or right), initial hand position, and head rotations. Constant errors were less consistent across subjects, but also tended to point toward the head and body. Both overshoots and undershoots of the target position were observed. Increasing the duration of the memory delay period increased the size but did not alter the orientation of the variable-error ellipsoids. Variability of the endpoint positions increased equally in all three Cartesian directions as the memory delay increased from 0.5 to 8.0 s. The anisotropy of variable errors indicates a viewer-centered reference frame for pointing to remembered visual targets with vision of the finger. The anisotropy of pointing variability stems from variability in egocentric binocular cues as opposed to reliance on allocentric visual references or to specific approximations in the sensorimotor transformation. Nevertheless, observed increases in variability with longer memory delays indicate that the short-term storage of the target position does not simply mirror the retinal and ocular sensory signals of the visually acquired target location. Thus spatial memory is carried out in an internal representation that is viewer-centered but that may be isotropic with respect to Cartesian space.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Hu ◽  
Huijun Sun ◽  
Ge Gao ◽  
Juan Wei ◽  
Lei You

In order to effectively depict the group evacuation behavior in the complicated three-dimensional space, a novel pedestrian flow model is proposed with three-dimensional cellular automata. In this model the calculation methods of floor field and fire gain are elaborated at first, and the transition gain of target position at the next moment is defined. Then, in consideration of pedestrian intimacy and velocity change, the group evacuation strategy and evolution rules are given. Finally, the experiments were conducted with the simulation platform to study the relationships of evacuation time, pedestrian density, average system velocity, and smoke spreading velocity. The results had shown that large-scale group evacuation should be avoided, and in case of large pedestrian density, the shortest route of evacuation strategy would extend system evacuation time.


2013 ◽  
Vol 36 (5) ◽  
pp. 564-565 ◽  
Author(s):  
Francesco Savelli ◽  
James J. Knierim

AbstractIn a surface-dwelling animal like the rat, experimental strategies for investigating the hippocampal correlates of three-dimensional space appear inevitably complicated by the interplay of global versus local reference frames. We discuss the impact of the resulting confounds on present and future empirical analysis of the “bicoded map” hypothesis by Jeffery and colleagues.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


Sign in / Sign up

Export Citation Format

Share Document