Changes in Intracellular Ca2+ Induced by GABAA Receptor Activation and Reduction in Cl− Gradient in Neonatal Rat Neocortex

1998 ◽  
Vol 79 (1) ◽  
pp. 439-446 ◽  
Author(s):  
Atsuo Fukuda ◽  
Kanji Muramatsu ◽  
Akihito Okabe ◽  
Yasunobu Shimano ◽  
Hideki Hida ◽  
...  

Fukuda, Atsuo, Kanji Muramatsu, Akihito Okabe, Yasunobu Shimano, Hideki Hida, Ichiro Fujimoto, and Hitoo Nishino. Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl− gradient in neonatal rat neocortex. J. Neurophysiol. 79: 439–446, 1998. We have studied the effects of γ-aminobutyric acid (GABA) and of reducing the Cl− gradient on the [Ca2+]i in pyramidal neurons of rat somatosensory cortex. The Cl− gradient was reduced either with furosemide or by oxygen-glucose deprivation. Immature slices taken at postnatal day (P)7–14 were labeled with fura-2, and [Ca2+]i was monitored in identified pyramidal cells in layer II/III as the ratio of fluorescence intensities (RF340/F380). The magnitude of the [Ca2+]i increases induced by oxygen-glucose deprivation was significantly reduced (by 44%) by bicuculline (10 μM), a GABAA receptor antagonist. Under normal conditions, GABA generally did not raise [Ca2+]i, although in some neurons a small and transient [Ca2+]i increase was observed. These transient [Ca2+]i increases were blocked by Ni2+ (1 mM), a blocker of voltage-dependent Ca2+ channels (VDCCs). Continuous perfusion with GABA did not cause a sustained elevation of [Ca2+]i but bicuculline caused [Ca2+]i oscillations. After inhibition of Cl− extrusion with furosemide (1.5 mM), GABA induced a large [Ca2+]i increase consisting of an initial peak followed by a sustained phase. Both the initial and the sustained phases were eliminated by bicuculline (10 μM). The initial but not the sustained phase was abolished by Ni2+. In the presence of Ni2+, the remaining sustained response was inhibited by the addition of 2-amino-5-phosphonopentanoic acid (AP5, 20 μM), a selective N-methyl-d-aspartate (NMDA) receptor antagonist. Thus the initial peak and the sustained phase of the GABA-evoked [Ca2+]i increase were mediated by Ca2+ influx through VDCCs and NMDA receptor channels, respectively, and both phases were initiated via the GABAA receptor. These results indicate that, in neocortical pyramidal neurons, a reduction in the Cl− gradient converts the GABAA receptor-mediated action from nothing or virtually nothing to a large and sustained accumulation of cellular Ca2+. This accumulation is the result of Ca2+ influx mainly through the NMDA receptor channel. Thus GABA, normally an inhibitory transmitter, may play an aggravating role in excitotoxicity if a shift in the Cl− equilibrium potential occurs, as reported previously, during cerebral ischemia.

2006 ◽  
Vol 95 (4) ◽  
pp. 2155-2166 ◽  
Author(s):  
Robert B. Levy ◽  
Alex D. Reyes ◽  
Chiye Aoki

We studied the cholinergic modulation of glutamatergic transmission between neighboring layer 5 regular-spiking pyramidal neurons in somatosensory cortical slices from young rats (P10-P26). Brief bath application of 5–10 μM carbachol, a nonspecific cholinergic agonist, decreased the amplitude of evoked unitary excitatory postsynaptic potentials (EPSPs). This effect was blocked by 1 μM atropine, a muscarinic receptor antagonist. Nicotine (10 μM), in contrast to carbachol, reduced EPSPs in nominally magnesium-free solution but not in the presence of 1 mM Mg+2, indicating the involvement of NMDA receptors. Likewise, when the postsynaptic cell was depolarized under voltage clamp to allow NMDA receptor activation in the presence of 1 mM Mg+2, synaptic currents were reduced by nicotine. Nicotinic EPSP reduction was prevented by the NMDA receptor antagonist d-AP5 (50 μM) and by the nicotinic receptor antagonist mecamylamine (10 μM). Both carbachol and nicotine reduced short-term depression of EPSPs evoked by 10 Hz stimulation, indicating that EPSP reduction happens via reduction of presynaptic glutamate release. In the case of nicotine, several possible mechanisms for NMDAR-dependent EPSP reduction are discussed. As a result of NMDA receptor dependence, nicotinic EPSP reduction may serve to reduce the local spread of cortical excitation during heightened sensory activity.


1998 ◽  
Vol 79 (1) ◽  
pp. 430-438 ◽  
Author(s):  
Atsuo Fukuda ◽  
Kanji Muramatsu ◽  
Akihito Okabe ◽  
Yasunobu Shimano ◽  
Hideki Hida ◽  
...  

Fukuda, Atsuo, Kanji Muramatsu, Akihito Okabe, Yasunobu Shimano, Hideki Hida, Ichiro Fujimoto, and Hitoo Nishino. NMDA receptor-mediated differential laminar susceptibility to the intracellular Ca2+ accumulation induced by oxygen-glucose deprivation in rat neocortical slices. J. Neurophysiol. 79: 430–438, 1998. Slices of somatosensory cortex taken from immature rats on postnatal day (P)7–14 were labeled with fura-2. Intracellular Ca2+ concentration ([Ca2+]i) was monitored in identified pyramidal cells as the ratio of fluorescence intensities (RF340/F380) during oxygen-glucose deprivation. The RF340/F380 ([Ca2+]i) of individual pyramidal cells was monitored in each of the cortical layers II–VI simultaneously. Neurons in all neocortical layers exhibited significant increases in [Ca2+]i that varied with the duration of oxygen-glucose deprivation. Individual neurons responded to oxygen-glucose deprivation with abrupt increases in [Ca2+]i after various latencies. The ceiling level of the [Ca2+]i increase differed from cell to cell. Neurons in layer II/III showed significantly greater increases in [Ca2+]i than those in layers IV, V, or VI. Kynurenic acid, a nonselective glutamate receptor antagonist, and bicuculline, a selective γ-aminobutyric acid (GABA)A receptor antagonist, suppressed the intracellular Ca2+ accumulation induced by oxygen-glucose deprivation in all neocortical layers examined. After kynurenic acid, but not after bicuculline, there was no longer a differential [Ca2+]i increases in layer II/III. Both 2-amino-5-phosphonopentanoic acid (AP5), a selective N-methyl-d-aspartate (NMDA) receptor antagonist, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, strongly suppressed the intracellular Ca2+ accumulation induced by oxygen-glucose deprivation in all layers. The laminar difference in terms of the [Ca2+]i increases was abolished by AP5, but not by CNQX. These results indicate that layer II/III cells are the most prone to oxygen-glucose deprivation-induced intracellular Ca2+ accumulation, and that this is primarily mediated by NMDA receptors. Thus, layer II/III neurons would be more likely to suffer cellular Ca2+ overload and excitotoxicity during ischemia than layer IV–VI cells. Such a differential laminar vulnerability might play an important role in determining the pathological characteristics of the immature cortex and its sequelae later in life.


1991 ◽  
Vol 66 (3) ◽  
pp. 986-998 ◽  
Author(s):  
D. G. Rainnie ◽  
E. K. Asprodini ◽  
P. Shinnick-Gallagher

1. Intracellular current-clamp recordings obtained from neurons of the basolateral nucleus of the amygdala (BLA) were used to characterize postsynaptic potentials elicited through stimulation of the stria terminalis (ST) or the lateral amygdala (LA). The contribution of glutamatergic receptor subtypes to excitatory postsynaptic potentials (EPSPs) were analyzed by the use of the non N-methyl-D-aspartate (non-NMDA) antagonist, 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), and the NMDA antagonist, (DL)-2-amino-5-phosphonovaleric acid (APV). 2. Basic membrane properties of BLA neurons determined from membrane responses to transient current injection showed that at the mean resting membrane potential (RMP; -67.2 mV) the input resistance (RN) and time constant for membrane charging (tau) were near maximal, and that both values were reduced with membrane hyperpolarization, suggesting an intrinsic regulation of synaptic efficacy. 3. Responses to stimulation of the ST or LA consisted of an EPSP followed by either a fast inhibitory postsynaptic potential (f-IPSP) only, or by a fast- and subsequent slow-IPSP (s-IPSP). The EPSP was graded in nature, increasing in amplitude with increased stimulus intensity, and with membrane hyperpolarization after DC current injection. Spontaneous EPSPs were also observed either as discrete events or as EPSP/IPSP waveforms. 4. In physiological Mg2+ concentrations (1.2 mM), at the mean RMP, the EPSP consisted of dual, fast and slow, glutamatergic components. The fast-EPSP (f-EPSP) possessed characteristics of kainate/quisqualate receptor activation, namely, the EPSP increased in amplitude with membrane hyperpolarization, was insensitive to the NMDA receptor antagonist, APV (50 microM), and was blocked by the non-NMDA receptor antagonist, CNQX (10 microM). In contrast, the slow-EPSP (s-EPSP) decreased in amplitude with membrane hyperpolarization, was insensitive to CNQX (10 microM), and was blocked by APV (50 microM), indicating mediation by NMDA receptor activation. 5. In the presence of CNQX (10 microM), ST stimulation evoked an APV-sensitive s-EPSP. In contrast, LA stimulation evoked a f-IPSP, which when blocked by subsequent addition of bicuculline methiodide (BMI; 30 microM) revealed a temporally overlapping APV-sensitive s-EPSP. These data suggest that EPSP amplitude and duration are determined, in part, by the shunting of membrane conductance caused by a concomitant IPSP. 6. Superfusion of either CNQX or APV in BLA neurons caused membrane hyperpolarization and blockade of spontaneous EPSPs and IPSPs, suggesting that these compounds may act to block tonic excitatory amino acid (EAA) release within the nucleus, and that a degree of feed-forward inhibition occurs within the nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)


1992 ◽  
Vol 67 (5) ◽  
pp. 1185-1200 ◽  
Author(s):  
M. G. Blanton ◽  
A. R. Kriegstein

1. The properties of receptors for amino acid neurotransmitters expressed by developing cortical neurons were studied with the use of whole-cell recording in the intact cerebral cortex of embryonic turtles in vitro. The inhibitory agonist gamma-aminobutyric acid (GABA) and the excitatory agonist glutamate were focally applied to single cells under voltage clamp, and the ionic dependence, voltage dependence, and pharmacological sensitivity of the responses were characterized. The responses mediated by a glutamate receptor subtype, the N-methyl-D-aspartate (NMDA) receptor, produced by glutamate and by evoked release of an endogenous excitatory agonist, were compared further. Fluctuation analysis was used to characterize the properties of the NMDA channels and the mechanism of action of receptor antagonists. 2. When postmitotic neurons first appeared at stage 15, all neurons tested responded to GABA with a current that reversed at the equilibrium potential for chloride ions and that was sensitive to the GABAA receptor antagonist bicuculline methiodide (BMI). As development proceeded, an increasing proportion of neurons also responded with a BMI-insensitive current that reversed near the equilibrium potential for potassium ions. This current was blocked by the GABAB receptor antagonist 3-amino-2-propyl phosponic acid (phaclofen). The GABAB agonist baclofen, however, failed to produce a detectable postsynaptic current. 3. Neurons at stage 15 showed a biphasic response to glutamate that reversed at the equilibrium potential for cations. All neurons tested showed a slow, sustained response associated with an increase in current variance compared with background, and, as development proceeded, an increasing proportion also exhibited a fast, transient response. Both fast and slow responses varied linearly with voltage in the absence of Mg2+ ions, but the addition of Mg2+ ions to the bathing medium attenuated the slow response at hyperpolarized potentials. As a result, the current-voltage relation of the slow response in the presence of Mg2+ ions exhibited a region of negative slope conductance, like that of currents mediated by NMDA receptors. 4. The fast and slow responses to glutamate differed in their pharmacological sensitivity. The fast responses were sensitive to the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), whereas the slow responses were sensitive to the NMDA receptor antagonist D(-)-2-amino-5-phosphonovalerate (D-APV). 5. When cells were held at -70 mV, glutamate evoked a fluctuating current consisting of channel currents with a mean open time, tau, of 4.42 +/- 0.47 (SE) ms in early postmitotic neurons at stage 15 and 4.99 +/- 0.38 ms at stages 17-20.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document