Distribution and Characteristics of Poststimulus Effects in Proximal and Distal Forelimb Muscles From Red Nucleus in the Monkey

1998 ◽  
Vol 79 (4) ◽  
pp. 1777-1789 ◽  
Author(s):  
Abderraouf Belhaj-Saïf ◽  
Jennifer Hill Karrer ◽  
Paul D. Cheney

Belhaj-Saı̈f, Abderraouf, Jennifer Hill Karrer, and Paul D. Cheney. Distribution and characteristics of poststimulus effects in proximal and distal forelimb muscles from red nucleus in the monkey. J. Neurophysiol. 79: 1777–1789, 1998. We used stimulus-triggered averaging (StTA) of electromyographic (EMG) activity to investigate two major questions concerning the functional organization of the magnocellular red nucleus (RNm) for reaching movements in the macaque monkey. The first is whether the clear preference toward facilitation of extensor muscles we have reported in previous studies for distal (wrist and digit) forelimb muscles also exists for proximal muscles (shoulder and elbow). The second question is whether distal and proximal muscles may be cofacilitated from RNm suggesting the representation of functional muscle synergies for coordinated reaching movements. Two monkeys were trained to perform a prehension task requiring multijoint coordination of the forelimb. EMG activity was recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (20 μA at 20 Hz) was delivered throughout the movement task. From 137 microstimulation sites in the RNm, a total of 977 poststimulus effects was obtained including 733 poststimulus facilitation effects (PStF) and 244 poststimulus suppression effects (PStS). Of the PStF effects, 58% were obtained from distal muscles; 42% from proximal muscles. Digit muscles were more frequently facilitated (35%) than the wrist, elbow, or shoulder muscles (20, 24, and 18%, respectively). The intrinsic hand muscles were infrequently facilitated (3%). At all joints tested, PStF was more common in extensor muscles than flexor muscles. This extensor preference was very strong for shoulder (85%), wrist (85%), and digit muscles (94%) and weaker for elbow muscles (60%). Of the PStS effects, 65% were in distal muscles and 35% in proximal muscles. Interestingly, the flexor muscles were more frequently inhibited from RNm than extensor muscles. At 72% of stimulation sites, at least two muscles were facilitated. The majority of these sites (61%) cofacilitated both proximal and distal muscles. At the remaining sites (39%), PStF was observed in either the proximal (17%) or distal muscles (22%). Facilitation most often involved combinations of shoulder, elbow, and distal muscles (30%) or shoulder and distal muscles (26%). Only rarely were intrinsic hand muscles part of the total muscle synergy. Our results show that the RNm 1) controls both proximal and distal muscles but the strength of influence is biased toward distal muscles, 2) preferentially controls extensor muscles not only at distal forelimb joints but also at proximal joints, and 3) output zones cofacilitate synergies of proximal and distal muscles involved in the control of forelimb reaching movements.

2000 ◽  
Vol 83 (5) ◽  
pp. 3147-3153 ◽  
Author(s):  
Abderraouf Belhaj-Saïf ◽  
Paul D. Cheney

It has been hypothesized that the magnocellular red nucleus (RNm) contributes to compensation for motor impairments associated with lesions of the pyramidal tract. To test this hypothesis, we used stimulus triggered averaging (StTA) of electromyographic (EMG) activity to characterize changes in motor output from the red nucleus after lesions of the pyramidal tract. Three monkeys were trained to perform a reach and prehension task. EMG activity was recorded from 11 forearm muscles including one elbow, five wrist, and five digit muscles. Microstimulation (20 μA at 20 Hz) was delivered throughout the movement task to compute StTAs. Two monkeys served as controls. In a third monkey, 65% of the left pyramidal tract had been destroyed by an electrolytic lesion method five years before recording. The results demonstrate a clear pattern of postlesion reorganization in red nucleus–mediated output effects on forearm muscles. The normally prominent extensor preference in excitatory output from the RNm (92% in extensors) was greatly diminished in the lesioned monkey (59%). Similarly, suppression effects, which are normally much more prominent in flexor than in extensor muscles (90% in flexors), were also more evenly distributed after recovery from pyramidal tract lesions. Because of the limited excitatory output from the RNm to flexor muscles that normally exists, loss of corticospinal output would leave control of flexors particularly weak. The changes in RNm organization reported in this study would help restore function to flexor muscles. These results support the hypothesis that the RNm is capable of reorganization that contributes to the recovery of forelimb motor function after pyramidal tract lesions.


1985 ◽  
Vol 53 (3) ◽  
pp. 805-820 ◽  
Author(s):  
P. D. Cheney ◽  
E. E. Fetz ◽  
S. S. Palmer

Patterns of excitatory and inhibitory effects were produced in antagonistic forelimb muscles by single intracortical microstimuli (S-ICMS) applied to motor cortex sites in macaque monkeys performing ramp-and-hold wrist movements. Stimulus-triggered averages (stimulus-TAs) of rectified electromyographic (EMG) activity revealed poststimulus facilitation and/or suppression in identified flexor and extensor muscles of the wrist and fingers. At 22 cortical sites the action potentials of single cells were also recorded and used to compute spike-triggered averages (spike-TAs) of covarying muscles. The set of muscles activated during the movement in which the cell was active are referred to here as "agonists"; those muscles active during wrist movement in the opposite direction are called "antagonists." (At sites where cells were not isolated the muscles showing poststimulus facilitation were called agonists.) Poststimulus effects in agonist muscles typically consisted of facilitation in a subset of the agonists. For 48 sites from which poststimulus effects were tested on both flexors and extensors, the following combinations of effects were observed: 1) pure facilitation of agonist muscles with no effect on antagonists; 2) facilitation of both agonists and antagonists; 3) facilitation of agonist muscles with reciprocal suppression of antagonists; 4) "mixed" facilitation and suppression of synergist muscles; and 5) pure suppression of some muscles with no effect on their antagonists. The suppression effects appeared most commonly in flexor muscles; conversely, facilitation was generally stronger in extensors. Cortical sites eliciting pure suppression of flexor muscles with no facilitation of extensor muscles were found in two monkeys. These purely suppressive effects were observed not only in stimulus-TAs but also in spike-TAs computed from single cells at these sites. Some of these cells increased their activity during wrist extension (but had no detectable effect on the extensor muscles); others discharged during flexion. Several observations suggest that the cortically evoked suppression is mediated by polysynaptic relays. The mean onset latency of the postspike suppression (7.4 ms) produced by inhibitory cells was longer than the mean onset latency of postspike facilitation (6.7 ms) produced by CM cells. Similarly, the mean onset latency of poststimulus suppression (8.9 ms) was longer than that of poststimulus facilitation (8.0 ms). Moreover, suppression was usually weaker than facilitation in the spike-TAs, as well as in stimulus-TAs compiled for the same stimulus intensity.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 80 (4) ◽  
pp. 1961-1980 ◽  
Author(s):  
Brian J. McKiernan ◽  
Joanne K. Marcario ◽  
Jennifer Hill Karrer ◽  
Paul D. Cheney

McKiernan, Brian J., Joanne K. Marcario, Jennifer Hill Karrer, and Paul D. Cheney. Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. J. Neurophysiol. 80: 1961–1980, 1998. We used spike-triggered averaging of rectified electromyographic activity to determine whether corticomotoneuronal (CM) cells produce postspike effects in muscles of both proximal and distal forelimb joints in monkeys performing a reach and prehension task. Two monkeys were trained to perform a self-paced task in which they reached forward from a starting position to retrieve a food reward from a small cylindrical well. We compiled spike-triggered averages from 22 to 24 separate forelimb muscles at both proximal (shoulder, elbow) and distal (wrist, digits, intrinsic hand) joints. Of 174 cells examined, 112 produced postspike effects in at least one of the target muscles. Of those cells, 45.5% produced postspike effects in both proximal and distal forelimb muscles. A nearly equal number (44.7%) produced postspike effects in distal muscles only, whereas a clear minority (9.8%) produced postspike effects in only proximal muscles. The majority of CM cells (71.4%) produced effects in two or more muscles, with an average muscle field of 3.1 ± 2.1 (mean ± SD) for facilitation plus suppression. Of 345 postspike effects identified, 70.7% were facilitation effects and 29.3% were suppression effects. The large majority of effects (72.2%) were in distal muscles. When averaged by joint, the latency and peak magnitude of postspike facilitation showed a stepwise increase from proximal to distal joints. The results of this study show that the majority of CM cells engaged in coordinated forelimb reaching movements facilitate and/or suppress muscles at multiple joints, including muscles at both proximal and distal joints. The results also show that CM cells make more frequent and more potent terminations in motoneuron pools of distal compared with proximal muscles.


2001 ◽  
Vol 85 (4) ◽  
pp. 1461-1478 ◽  
Author(s):  
Peter L. E. Van Kan ◽  
Martha L. McCurdy

Reaching to grasp is of fundamental importance to primate motor behavior and requires coordinating hand preshaping with limb transport and grasping. We aimed to clarify the role of cerebellar output via the magnocellular red nucleus (RNm) to the control of reaching to grasp. Rubrospinal fibers originating from RNm constitute one pathway by which cerebellar output influences spinal circuitry directly. We recorded discharge from individual forelimb RNm neurons while monkeys performed a reach-to-grasp task and two tasks that were similar to the reach-to-grasp task in trajectory, amplitude, and direction but did not include a grasp. One of these, the device task, elicited reaches while holding a handle, and the other, the free-reach task, elicited reaches that did not require any specific hand use for task performance. The results demonstrate that coordinated whole-limb reaching movements are associated with large discharge modulations of RNm neurons predominantly when hand use is included. Therefore RNm neurons can at best only make a minor contribution to the control of reaching movements that lack hand use. We evaluated relations between the discharge of individual RNm neurons and electromyographic (EMG) activity of forelimb muscles during the reach-to-grasp task by comparing times of peak RNm discharge to times of peak EMG activity. The results are consistent with the view that RNm discharge may contribute to EMG activity of both distal and proximal muscles during reaching to grasp especially digit extensor and limb elevation muscles. Relations between the discharge of individual RNm neurons and movements of the metacarpi-phalangeal (MCP), wrist, elbow, and shoulder joints during individual trials of task performance were quantified by parametric correlation analyses on a subset of neurons studied during the reach-to-grasp and free-reach tasks. The results indicate that MCP extensions were consistently preceded by bursts of RNm discharge, and strong correlations were observed between parameters of discharge and the duration, velocity, and amplitude of corresponding MCP extensions. In contrast, relations between discharge and movements of proximal joints were poorly represented, and RNm discharge was not related to the speed of limb transport. Based on our data and those of others, we hypothesize that cerebellar output via RNm is specialized for controlling hand use and conclude that RNm may contribute to the control of hand preshaping during reaching to grasp by activating muscle synergies that produce the appropriate MCP extension at the appropriate phase of limb transport.


1991 ◽  
Vol 66 (3) ◽  
pp. 919-938 ◽  
Author(s):  
T. Drew

1. This article presents the results from stimulation in 21 loci within the medullary reticular formation (MRF; between 0.5 and 2.5 mm from the midline) and in 5 loci in the medial longitudinal fasciculus (MLF) of four intact, unanesthetized cats during locomotion. Stimulus trains (11 pulses, 0.2-ms duration, 330 Hz, stimulus strength 35 microA) were applied at those loci in each track at which the most widespread effects in each of the four limbs were obtained with the cat at rest. Electromyograms were recorded from flexor and extensor muscles of each limb. 2. As previously reported, stimulation with the cat at rest generally evoked brief, short-latency, twitch responses in both flexor and extensor muscles of more than one limb. In contrast, stimulation during locomotion evoked a more complex pattern of activity in which responses were normally evoked in one or other of the muscle pairs and incorporated into the locomotor pattern. 3. In the majority of sites, the stimulation evoked excitatory responses in the flexor muscles of each of the four limbs during that period of the step cycle in which each respective muscle was naturally active; stimulation in the stance phase of locomotion, although less effective, was also capable of producing responses in these muscles. All three ipsilateral extensor muscles studied [long and lateral heads of triceps and vastus lateralis (Tri, TriL, and VL, respectively)] were normally inhibited during their phase of muscle activity, although excitatory responses were occasionally seen. Responses in the contralateral (co) Tri were invariably excitatory and were largest during the period of muscle activity, whereas responses during the period of activity of the coVL were mixed, with both excitatory and inhibitory responses being seen from any one locus. 4. Excitatory responses were normally largest when stimulation was applied during the time that the muscle was active during the locomotor cycle. Responses evoked at times when the muscle was inactive were sometimes larger than those evoked with the animal at rest; such responses were most commonly seen in the hindlimb flexors and in the coVL. 5. In both flexors and extensors of each of the four limbs, the latency of the responses was greatest when the cat was at rest and least for stimuli given during the period of activity of the respective muscle. Average latencies during the period of muscle activity ranged from a minimum of 9.0 +/- 2.6 (SD) ms for inhibitory responses in the ipsilateral Tri and TriL to a maximum of 17.1 +/- 3.0 ms for the responses evoked in the ipsilateral semitendinosus.(ABSTRACT TRUNCATED AT 400 WORDS)


2006 ◽  
Vol 96 (5) ◽  
pp. 2229-2252 ◽  
Author(s):  
Bénédicte Schepens ◽  
Trevor Drew

We examined the contribution of neurons within the pontomedullary reticular formation (PMRF) to the control of reaching movements in the cat. We recorded the activity of 127 reticular neurons, including 56 reticulospinal neurons, during movements of each forelimb; 67/127 of these neurons discharged prior to the onset of activity in the prime flexor muscles during the reach of the ipsilateral limb and form the focus of this report. Most neurons (63/67) showed similar patterns and levels of discharge activity during reaches of either limb, although activity was slightly greater during reach of the ipsilateral limb. In 26/67 cells, the initial change in discharge activity was time-locked to the go signal during reaches of either limb; we have argued that this early discharge contributes to the anticipatory postural adjustments that precede movement. In 11/26 cells, the initial change in activity was reciprocal for reaches with the left and right limbs, although activity during the movement was nonreciprocal. Spike-triggered averaging produced postspike facilitation or depression (PSD) in 12/50 cells during reaches of the limb ipsilateral to the recording site and in 17/49 cells during reach of the contralateral limb. Some cells produced PSD in ipsilateral extensor muscles before the start of the reach and during reaches made with the contralateral, but not the ipsilateral limb; this suggests the signal must be differentially gated. Overall, the results suggest a strong bilateral, albeit asymmetric, contribution from the PMRF to the control of posture and movement during voluntary movement.


2004 ◽  
Vol 92 (5) ◽  
pp. 2968-2984 ◽  
Author(s):  
Michael C. Park ◽  
Abderraouf Belhaj-Saïf ◽  
Paul D. Cheney

Stimulus-triggered averaging (StTA) of electromyographic (EMG) activity from 24 simultaneously recorded forelimb muscles was used to investigate properties of primary motor cortex (M1) output in the macaque monkey. Two monkeys were trained to perform a reach-to-grasp task requiring multijoint coordination of the forelimb. EMG activity was recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (15 μA at 15 Hz) was delivered throughout the movement task. From 297 stimulation sites in M1, a total of 2,079 poststimulus effects (PStE) were obtained including 1,398 poststimulus facilitation (PStF) effects and 681 poststimulus suppression (PStS) effects. Of the PStF effects, 60% were in distal and 40% in proximal muscles; 43% were of extensors and 47% flexors. For PStS, the corresponding numbers were 55 and 45% and 36 and 55%, respectively. M1 output effects showed extensive cofacilitation of proximal and distal muscles (96 sites, 42%) including 47 sites that facilitated at least one shoulder, elbow, and distal muscle, 45 sites that facilitated an elbow muscle and a distal muscle, and 22 sites that facilitated at least one muscle at all joints. The muscle synergies represented by outputs from these sites may serve an important role in the production of coordinated, multijoint movements. M1 output effects showed many similarities with red nucleus output although red nucleus effects were generally weaker and showed a strong bias toward facilitation of extensor muscles and a greater tendency to facilitate synergies involving muscles at noncontiguous joints.


1999 ◽  
Vol 81 (5) ◽  
pp. 2297-2315 ◽  
Author(s):  
Marie-Josée Rho ◽  
Sylvain Lavoie ◽  
Trevor Drew

Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. To determine the extent to which the rubrospinal tract is capable of modifying locomotion in the intact cat, we applied microstimulation (cathodal current, 330 Hz; pulse duration 0.2 ms; maximal current, 25 μA) to the red nucleus during locomotion. The stimuli were applied either as short trains (33 ms) of impulses to determine the capacity of the rubrospinal tract to modify the level of electromyographic (EMG) activity in different flexors and extensors at different phases of the step cycle or as long trains (200 ms) of pulses to determine the effect of the red nucleus on cycle timing. Stimuli were also applied with the cat at rest (33-ms train). This latter stimulation evoked short-latency (average = 11.8–19.0 ms) facilitatory responses in all of the physiological flexor muscles of the forelimb that were recorded; facilitatory responses were also common in the elbow extensor, lateral head of triceps but were rare in the physiological wrist and digit extensor, palmaris longus. Responses were still evoked in most muscles when the current was decreased to near threshold (3–10 μA). Stimulation during locomotion with the short trains of stimuli evoked shorter-latency (average = 6.0–12.5 ms) facilitatory responses in flexor muscles during the swing phase of locomotion and, except in the case of the extensor digitorum communis, evoked substantially smaller responses in stance. The same stimuli also evoked facilitatory responses in the extensor muscles during swing and produced more complex effects involving both facilitation and suppression in stance. Increasing the duration of the train to 200 ms modified the amplitude and duration of the EMG activity of both flexors and extensors but had little significant effect on the cycle duration. In contrast, whereas stimulation of the motor cortex with short trains of stimuli during locomotion had very similar effects to that of the red nucleus, increasing the train duration to 200 ms frequently produced a marked reset of the step cycle by curtailing stance and initiating a new period of swing. The results suggest that whereas both the motor cortex and the red nucleus have access to the interneuronal circuits responsible for controlling the structure of the EMG activity in the step cycle, only the motor cortex has access to the circuits responsible for controlling cycle timing.


1998 ◽  
Vol 80 (5) ◽  
pp. 2475-2494 ◽  
Author(s):  
Steve I. Perlmutter ◽  
Marc A. Maier ◽  
Eberhard E. Fetz

Perlmutter, Steve I., Marc A. Maier, and Eberhard E. Fetz. Activity of spinal interneurons and their effects on forearm muscles during voluntary wrist movements in the monkey. J. Neurophysiol. 80: 2475–2494, 1998. We studied the activity of 577 neurons in the C6–T1 spinal cord of three awake macaque monkeys while they generated visually guided, isometric flexion/extension torques about the wrist. Spike-triggered averaging of electromyographic activity (EMG) identified the units' correlational linkages with ≤12 forearm muscles. One hundred interneurons produced changes in the level of average postspike EMG with onset latencies consistent with mono- or oligosynaptic connections to motoneurons; these were classified as premotor interneurons (PreM-INs). Most PreM-INs (82%) produced postspike facilitations in forearm muscles. Earlier spike-related features, often beginning before the trigger spike, were seen in spike-triggered averages from 72 neurons. Postspike effects were present in one muscle for 64% of the PreM-INs. Neurons with divergent linkages to larger “muscle fields” usually generated postspike effects in synergistic muscles. Fifty-eight percent of the PreM-INs had postspike effects in flexor muscles only and 29% in extensor muscles only. Postspike effects were distributed relatively evenly among the primary flexor and extensor muscles studied. The mean percent change in EMG level from baseline and the mean onset latencies for postspike facilitations and postspike suppressions were similar. PreM-INs exhibited a variety of response patterns during the generation of isometric wrist torque. The response patterns and output effects of 24% of the PreM-INs were consistent with a strict reciprocal organization of flexor and extensor muscle control. For another 60% of the PreM-INs, there was a congruent relation between activity and output effects for only one direction of torque production. These neurons were active for both flexion and extension torques, including 37 neurons that exhibited bidirectional increases in discharge rate. The relatively small number of postspike suppressions observed suggests that inhibitory interneurons were silent when their target muscles were recruited. Compared with premotor neurons in the motor cortex, the red nucleus and the C8–T1 dorsal root ganglia, spinal PreM-INs affected flexor muscles in greater proportions and had smaller muscle fields. The magnitudes of postspike facilitations were similar in all premotor populations. Bidirectional activity, common for PreM-INs, was rare for corticomotoneuronal and premotor dorsal root ganglion cells, which discharge only for torques in their preferred direction.


1991 ◽  
Vol 66 (6) ◽  
pp. 1965-1977 ◽  
Author(s):  
K. Mewes ◽  
P. D. Cheney

1. The output effects of 214 cells in the magnocellular red nuclei of two rhesus monkeys (Macaca mulatta) were tested with spike-triggered averaging of electromyogram (EMG) activity from six forearm extensor and six flexor muscles. The monkeys performed an alternating wrist movement task (auxotonic paradigm) or generated wrist torque trajectories alternating between flexion and extension (isometric paradigm). 2. Sixty-five cells (30%) were identified as rubromotoneuronal (RM) cells on the basis of their postpike effects on forearm flexor and extensor muscles. Three major types of RM cell output organization were identified: 1) pure facilitation (28 cells), 2) reciprocal (18 cells), and 3) cofacilitation (16 cells). 3. RM cell output showed a strong preference for facilitation of extensor forearm muscles. This preference was reflected in the fact that 69% (43 of 62) of RM cells facilitated extensors exclusively or most strongly; 27% facilitated flexors exclusively or most strongly; and 5% facilitated flexors and extensors equally. Postspike facilitation (PSpF) was observed in 45% of the extensor muscles and 20% of the flexors tested. In contrast, postpike suppression (PSpS) was observed in 3% of the extensors and 7% of the flexors. 4. The mean number of extensors facilitated per RM cell was 3.1 (53% of tested) compared with 2.8 (51% of tested) flexors facilitated per cell. The extensor and flexor PSpS muscle field sizes were both 2.0 (35% of extensors and 36% of flexors tested). The mean number of muscles facilitated by cofacilitation cells was 5.8 (48%) per cell. No clear preference was found for facilitation of particular combinations of synergist muscles. 5. PSpF magnitude was assessed by measuring both the percent change of facilitation or suppression from baseline and the signal-to-noise ratio of effects. The overall average magnitudes of RM PSpF and PSpS were 4.1 +/- 2.0 and 4.0 +/- 2.3% change from baseline, respectively. The average magnitude of PSpF in flexors was not significantly different from that of extensors; neither was there a difference in the average magnitude of PSpS in flexors and extensors. 6. The mean onset latency of RM cell PSpS was greater than PSpF (9.2 +/- 3.0 vs. 5.7 +/- 1.8 ms; P less than or equal to 0.05). This can be attributed to an underlying minimal disynaptic linkage to motoneurons for suppression effects, whereas most PSpFs are probably mediated by underlying monosynaptic connections. The mean onset latency of flexor PSpFs was greater than that of extensors (6.4 +/- 2.3 vs. 5.4 +/- 1.5 ms; P less than or equal to 0.05).(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document