Functional organization within the medullary reticular formation of the intact unanesthetized cat. III. Microstimulation during locomotion

1991 ◽  
Vol 66 (3) ◽  
pp. 919-938 ◽  
Author(s):  
T. Drew

1. This article presents the results from stimulation in 21 loci within the medullary reticular formation (MRF; between 0.5 and 2.5 mm from the midline) and in 5 loci in the medial longitudinal fasciculus (MLF) of four intact, unanesthetized cats during locomotion. Stimulus trains (11 pulses, 0.2-ms duration, 330 Hz, stimulus strength 35 microA) were applied at those loci in each track at which the most widespread effects in each of the four limbs were obtained with the cat at rest. Electromyograms were recorded from flexor and extensor muscles of each limb. 2. As previously reported, stimulation with the cat at rest generally evoked brief, short-latency, twitch responses in both flexor and extensor muscles of more than one limb. In contrast, stimulation during locomotion evoked a more complex pattern of activity in which responses were normally evoked in one or other of the muscle pairs and incorporated into the locomotor pattern. 3. In the majority of sites, the stimulation evoked excitatory responses in the flexor muscles of each of the four limbs during that period of the step cycle in which each respective muscle was naturally active; stimulation in the stance phase of locomotion, although less effective, was also capable of producing responses in these muscles. All three ipsilateral extensor muscles studied [long and lateral heads of triceps and vastus lateralis (Tri, TriL, and VL, respectively)] were normally inhibited during their phase of muscle activity, although excitatory responses were occasionally seen. Responses in the contralateral (co) Tri were invariably excitatory and were largest during the period of muscle activity, whereas responses during the period of activity of the coVL were mixed, with both excitatory and inhibitory responses being seen from any one locus. 4. Excitatory responses were normally largest when stimulation was applied during the time that the muscle was active during the locomotor cycle. Responses evoked at times when the muscle was inactive were sometimes larger than those evoked with the animal at rest; such responses were most commonly seen in the hindlimb flexors and in the coVL. 5. In both flexors and extensors of each of the four limbs, the latency of the responses was greatest when the cat was at rest and least for stimuli given during the period of activity of the respective muscle. Average latencies during the period of muscle activity ranged from a minimum of 9.0 +/- 2.6 (SD) ms for inhibitory responses in the ipsilateral Tri and TriL to a maximum of 17.1 +/- 3.0 ms for the responses evoked in the ipsilateral semitendinosus.(ABSTRACT TRUNCATED AT 400 WORDS)

1984 ◽  
Vol 52 (4) ◽  
pp. 653-675 ◽  
Author(s):  
T. Drew ◽  
S. Rossignol

Electromyographic and kinematic responses of all four limbs were studied when loci within the medullary reticular formation (MRF) were stimulated (30-ms train of 0.2-ms pulses at 300 Hz, strength 35 microA) during treadmill locomotion in spontaneously walking thalamic cats. Responses could be evoked in flexor or extensor muscles of any given limb by such stimulation, depending on the time during the step cycle at which the stimulus was delivered. Stimulation normally excited flexor muscles but could either excite or inhibit extensor muscles depending on the exact position of the electrode. Excitatory responses in extensor muscles were often followed by a short period of inhibition of activity. The responses in muscles of the opposing limbs of the same girdle were, in general, reciprocally organized. For instance, a stimulus delivered during the swing phase of the ipsilateral limb normally evoked excitatory responses both in flexor muscles of that limb and in extensor muscles of the contralateral limb. The same stimulus delivered during the stance phase of the ipsilateral limb evoked excitatory responses in ipsilateral extensor muscles and in contralateral flexor muscles. Responses were also observed at the same time in fore- and hindlimbs that were well organized with respect to the locomotor cycle. Seventy-five percent of all responses occurred within 8-20 ms of the onset of the stimulus train. Responses evoked in muscles of the opposing limbs of one girdle (e.g., a flexor of one limb and an extensor of the other) had similar latencies, suggesting that the responses were synchronously organized on both sides of the body rather than one being a consequence of the other. Although the majority of responses in a given muscle were elicited during its period of activity, responses could occasionally be evoked when there was no activity in that muscle or could be absent despite activity in the muscle. The short trains of stimuli were normally potent enough to affect the limb trajectory, which reflected changes in the onset or the offset of the activity of most muscles. Thus the stimuli effectively changed both the duration of the period of activity in these muscles and the overall step cycle. Longer trains of stimuli (200 ms) markedly amplified these changes to the point of completely resetting the locomotor rhythm.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 55 (2) ◽  
pp. 375-401 ◽  
Author(s):  
T. Drew ◽  
R. Dubuc ◽  
S. Rossignol

Recordings were made from single units in the medullary reticular formation (MRF) between AP-4.2 and AP-12.9 and from the midline to 3.7 mm lateral in chronically prepared, unrestrained cats walking on a treadmill. Recordings were made with rigid microelectrodes held in a microdrive, and reticulospinal neurons were identified by antidromic stimulation of their axons through microwires chronically implanted into the spinal cord at the L2 level. Electromyograms (EMGs) were recorded from flexor and extensor muscles of the fore- and hindlimbs as well as from back and neck muscles. In total, 295 cells were recorded from 40 penetrations in 4 cats; 252 of these cells were recorded from the more medial regions of the reticular formation encompassing the gigantocellular, magnocellular, and lateral tegmental fields; 38.5% of these (97/252) were antidromically identified from the spinal cord. The remaining 43 neurons (43/295) were recorded from a more lateral and ventral position. These medial and ventrolateral groups of neurons differed not only in position but also in aspects of their discharge during locomotion. Rank-ordered raster displays, triggered from the onset of each recorded muscle, were used to correlate neuronal and muscular activity. The discharge rate of 31% of the reticulospinal neurons (30/97) was modulated once or twice in each step cycle and was strictly related to one or more of the recorded EMGs (EMG-related neurons) on the basis of the pattern of discharge. The discharge of 33/97 (34%) of the neurons was modulated at the periodicity of the locomotor rhythm but could not be correlated with any of the recorded EMGs (locomotor-related cells), whereas the remaining 34/97 neurons (35%) were either silent, fired tonically, or were not related to the locomotor pattern (unrelated cells). Of the EMG-related neurons 27% were related to flexor muscles and the remaining 63% to extensor muscle activity. The discharge pattern of all except two of the flexor-related neurons was correlated with hindlimb muscle activity, whereas that of the extensor-related neurons was correlated almost equally with fore- and hindlimb muscles. Correlations were found with muscles lying both ipsilaterally and contralaterally to the site of the recordings. Although the locomotor-related neurons showed no preferential relation with any of the recorded EMGs, a comparison of the depth of modulation of their discharge measured from postevent histograms suggested that more of these cells were related to the forelimb than to the hindlimb.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 64 (3) ◽  
pp. 782-795 ◽  
Author(s):  
T. Drew ◽  
S. Rossignol

1. The present study has examined the detailed organization of the medullary reticular formation (MRF) as revealed by microstimulation (33-ms trains of 0.2-ms duration pulses at 330 Hz and 35 microA or less) in the intact, chronically implanted, unanesthetized cat. Stimulus-locked electromyographic (EMG) responses were recorded from flexors and extensors of each of the four limbs, as well as bilaterally from muscles of the neck and back, during stimulation of the same 592 loci that formed the basis of the preceding article. 2. The thresholds of the responses were different for each group of muscles, with, on the average, the neck muscles being activated at the lowest range of currents, 13.8-16.5 microA; forelimb muscles at 16.9-17.9 microA; back muscles at 25.4-25.7 microA; and hindlimb muscles at 21.1-25.7 microA. 3. Whereas stimulation within the MRF evoked movement of the head only to the stimulated side (preceding article), analysis of the EMG responses showed there was frequently bilateral activation of the neck muscles. Similarly, even though stimulation produced predominantly ipsilateral elbow flexion and contralateral elbow extension, most loci caused cocontraction of antagonistic muscles at these joints. Cocontraction was also frequently observed for the hindlimbs. Reciprocal activation of antagonistic muscles was less frequent but was observed in the ipsilateral forelimb as well as in both hindlimbs; it was never observed in the contralateral forelimb. 4. Although excitatory responses were observed from widespread regions for all of the muscles under study, those regions of the MRF that evoked the strongest responses in each muscle showed a large degree of segregation. Muscles of the ipsilateral forelimb were most strongly activated from the rostrodorsal MRF, whereas muscles of the contralateral forelimb were most strongly effected by stimulation caudoventrally. Muscles of the hindlimbs were more strongly activated from the rostral brain stem, although with some exceptions. Responses in axial muscles were evoked from widespread regions of the brain stem but were concentrated further caudally than were the limb muscles. 5. Excitatory responses were much more prevalent than inhibitory responses and were evoked from all regions of the MRF, including the most caudal and ventral areas. The shortest latency responses in each track were, on the average, as follows: 6.6-8.8 ms for the neck; 11.2-13.4 ms for the forelimbs; 13.8-14.2 ms for the back; and 15.9-17.2 ms for the hindlimbs. Inhibitory responses were also evoked from widely distributed regions, which were intermingled with those loci evoking excitatory responses.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 71 (1) ◽  
pp. 229-245 ◽  
Author(s):  
M. C. Perreault ◽  
S. Rossignol ◽  
T. Drew

1. The present study was designed to determine the effects of microstimulation of the medullary reticular formation (MRF) on the locomotor activity of the cat in the absence of phasic afferent feedback from the limbs. To this end, both short (33 ms) and long (200 ms) trains of stimuli (trains of 0.2-ms pulses at 330 Hz, 35 microA) were applied at 43 loci in the MRF (P:6–12 mm; L:0.5–1.5 mm), and in 3 loci in the medial longitudinal fasciculus (P7.5, L < 0.5 mm) during fictive locomotion in the decerebrate and paralyzed cat. The locomotor pattern was monitored by recording the activity of representative flexor and extensor muscle nerves from each of the four limbs. 2. Short trains of stimuli evoked transient excitatory and/or inhibitory responses in extensor and flexor nerves of each limb that were incorporated into the locomotor pattern. In the majority of sites, excitatory responses were obtained in the motor nerves to both flexor and extensor muscles of the fore- and hindlimbs. The exception to this rule was the ipsilateral triceps, in which the predominant response was inhibitory. The amplitude of these responses was dependent on the time of the locomotor cycle at which the stimulus was delivered, and it was always maximum during the period of activity of the respective nerve. 3. The shortest latency response in the nerves to different muscles of the forelimb averaged between 5.6 and 7.3 ms; for the hindlimbs the values were between 6.9 and 9.3 ms. 4. Changing the depth at which the stimulation was applied in any one trajectory usually produced changes only in the amplitude of the evoked responses but occasionally also caused a change in the sign of these responses, especially in the most ventral regions of the MRF. 5. At 72% of the loci (31/43), short trains of stimulation also changed the duration of the activity in the recorded nerves. These changes were often (20/31 loci) sufficiently strong to alter the duration of the overall locomotor cycle. If one considers only the largest changes produced at each locus, stimulation during the period of ipsilateral extensor activity produced an average reduction in the ipsilateral locomotor cycle duration of 12.8 +/- 8.8% (mean +/- SD), whereas stimulation when the ipsilateral flexor nerve was active produced an average increase in locomotor cycle duration of 27.1 +/- 20.8%. 6. Long trains of stimuli produced similar but larger effects than the shorter trains and always reset the locomotor rhythm.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 84 (5) ◽  
pp. 2237-2256 ◽  
Author(s):  
Kiyoji Matsuyama ◽  
Trevor Drew

To examine the function of descending brain stem pathways in the control of locomotion, we have characterized the discharge patterns of identified vestibulo- and reticulospinal neurons (VSNs and RSNs, respectively) recorded from the lateral vestibular nucleus (LVN) and the medullary reticular formation (MRF), during treadmill walking. Data during locomotion were obtained for 44 VSNs and for 63 RSNs. The discharge frequency of most VSNs (42/44) was phasically modulated in phase with the locomotor rhythm and the averaged peak discharge frequency ranged from 41 to 165 Hz (mean = 92.8 Hz). We identified three classes of VSNs based on their discharge pattern. Type A, or double peak, VSNs (20/44 neurons, 46%) showed two peaks and two troughs of activity in each step cycle. One of the peaks was time-locked to the activity of extensor muscles in the ipsilateral hindlimb while the other occurred anti-phase to this period of activity. Type B, or single pause, neurons (13/44 neurons, 30%) were characterized by a tonic or irregular discharge that was interrupted by a single pronounced and brief period of decreased activity that occurred just before the onset of swing in the ipsilateral hindlimb; some type B VSNs also exhibited a brief pulse of activity just preceding this decrease. Type C, or single peak, neurons (9/44 neurons, 23%) exhibited a single period of increased activity that, in most cells, was time-locked to the burst of activity of either extensor or flexor muscles of a single limb. The population of RSNs that we recorded included neurons that showed phasic activity related to the activity of flexor or extensor muscles [electromyographically (EMG) related, 26/63, 41%], those that were phasically active but whose activity was not time-locked to the activity of any of the recorded muscles (13/63, 21%) and those that were completely unrelated to locomotion (24/63, 38%). Most of the EMG-related RSNs showed one (15/26) or two (11/26) clear phasic bursts of activity that were temporally related to either flexor or extensor muscles. The discharge pattern of double-burst RSNs covaried with ipsilateral and contralateral flexor muscles. Peak averaged discharge activity in these EMG-related RSNs ranged from 4 to 98 Hz (mean = 35.2 Hz). We discuss the possibility that most VSNs regulate the overall activity of extensor muscles in the four limbs while RSNs provide a more specific signal that has the flexibility to modulate the activity of groups of flexor and extensor muscles, in either a single or in multiple limbs.


1983 ◽  
Vol 3 (3) ◽  
pp. 270-279 ◽  
Author(s):  
Costantino Iadecola ◽  
Masatsugu Nakai ◽  
Ehud Arbit ◽  
Donald J. Reis

We examined the effects of electrical stimulation of a restricted area of the dorsal medullary reticular formation (DMRF) on regional cerebral blood flow (CBF) in anesthetized (by chloralose), paralyzed (by curare) rats. CBF was measured in tissue samples by the Kety principle, with 14C-iodoantipyrine as indicator. Stimulation of DMRF elicited a widespread, significant increase in CBF in 12 of 13 areas. The increase in flow was greatest in cerebral cortex, up to 240% of control. However, it was also substantially increased in selected regions of telencephalon, diencephalon, mesencephalon, and lower brainstem, but not cerebellum. In contrast, electrical stimulation of the midline (interstitial nucleus of the medial longitudinal fasciculus) 1 mm medial to the DMRF did not change CBF. The increase in CBF evoked by DMRF stimulation persisted after transection of the spinal cord at C1 or cervical sympathetic trunk. We conclude that excitation of neurons originating in or passing through the DMRF can elicit a potent and virtually global increase of CBF. The effect appears to be mediated by intrinsic pathways of the central nervous system.


2005 ◽  
Vol 94 (1) ◽  
pp. 657-672 ◽  
Author(s):  
Frédéric Bretzner ◽  
Trevor Drew

We used microstimulation to examine the contribution of the motor cortex to the structure and timing of the hindlimb step cycle during locomotion in the intact cat. Stimulation was applied to the hindlimb representation of the motor cortex in 34 sites in three cats using either standard glass-insulated microelectrodes (16 sites in 1 cat) or chronically implanted microwire electrodes (18 sites in 2 cats). Stimulation at just suprathreshold intensities with the cat at rest produced multijoint movements at a majority of sites (21/34, 62%) but evoked responses restricted to a single joint, normally the ankle, at the other 13/34 (38%) sites. Stimulation during locomotion generally evoked larger responses than the same stimulation at rest and frequently activated additional muscles. Stimulation at all 34 sites evoked phase-dependent responses in which stimulation in swing produced transient increases in activity in flexor muscles while stimulation during stance produced transient decreases in activity in extensors. Stimulation with long (200 ms) trains of stimuli in swing produced an increased level of activity and duration of flexor muscles without producing changes in cycle duration. In contrast, stimulation during stance decreased the duration of the extensor muscle activity and initiated a new and premature period of swing, resetting the step cycle. Stimulation of the pyramidal tract in two of these three cats as well as in two additional ones produced similar effects. The results show that the motor cortex is capable of influencing hindlimb activity during locomotion in a similar manner to that seen for the forelimb.


1990 ◽  
Vol 64 (3) ◽  
pp. 767-781 ◽  
Author(s):  
T. Drew ◽  
S. Rossignol

1. The present article described the various patterns of movement evoked in the limbs and neck by microstimulation (33-ms trains, 330 Hz, 0.2-ms pulses at less than or equal to 35 microA) of the medullary reticular formation (MRF) of seven chronically implanted, unanesthetized, intact cats. Altogether 878 loci were stimulated in 83 penetrations. However, as stimulation in the more lateral regions of the MRF was less effective, the results are based on stimulation in 592 loci made in 56 penetrations at distances of between 0.5 and 2.5 mm lateral to the midline. 2. Of these 592 loci, movement of one or more parts of the body was evoked from a total of 539 (91%) sites. Most of these movements were compound in nature, involving movement of one or more limbs as well as the head. Discrete movements were observed only with respect to the head; limb movements were always accompanied by head movement. In addition, hindlimb movements were always accompanied by forelimb movements, although the inverse was generally not true. 3. The most common effects of the stimulation were as follows: a turning of the head to the ipsilateral side (79% of stimulated sites); flexion of the ipsilateral elbow (41%); and extension of the contralateral elbow (45%). Effects in the hindlimbs were more variable and less frequent, with the majority of the effective loci causing flexion of the ipsilateral knee (9%) together with extension of the contralateral knee (8%). In total, including both flexion and extension, 18% of the stimulated sites caused movement of the ipsilateral hindlimb and 11% of the contralateral hindlimb. 4. Although movements of the head were obtained from the whole extent of the brain stem, movements of the forelimbs showed a dorsoventral organization with flexion of the ipsilateral elbow being evoked from the more dorsal regions of the brain stem, whereas contralateral elbow extension was evoked more frequently from the ventral regions. There was a large area of overlap from which movements of both limbs could be obtained simultaneously. Movements of the hindlimbs were more frequently evoked from central and ventral areas of the brain stem and from the most rostral aspect of the explored region. 5. In examining the combinations of movements evoked by the MRF stimulation, it was found that the most commonly evoked pattern was movement of the head to the stimulated side together with flexion of the ipsilateral forelimb and extension of the contralateral forelimb (26.5% of sites).(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 74 (5) ◽  
pp. 2211-2215 ◽  
Author(s):  
J. L. Smith ◽  
P. Carlson-Kuhta

1. Hindlimb kinematics and motor patterns were assessed from high-speed cine film synchronized with electromyographic (EMG) data from cats trained to walk on a walkway placed at four grades (25, 50, 75, and 100%). 2. Flexor muscles of the hip (iliopsoas) and ankle (tibialis anterior) had similar activity patterns for the swing phase of up- and down-slope walking; both flexor muscles also had stance-related activity during down-slope walking and this was unexpected. Extensor muscles of the hip (anterior biceps femoris and anterior semimembranosus), knee [vastus lateralis (VL)], and ankle [lateral gastrocnemius (LG)] were active during the stance phase of up-slope walking. The VL and LG activity was reduced in duration during stance of down-slope walking and centered around paw contact. Hip extensors, however, were totally inactive during stance of down-slope walking, and this was not expected. 3. Flexor muscles at the hip and ankle (not extensor muscles) dominated the stance phase of down-slope walking, especially at the steeper slopes. This switch in motor patterns may be required to counterbalance external forces that produced extension at the hip and ankle joints during the stance phase of down-slope walking. Neural mechanisms for programming stance-related activity of flexor muscles are discussed.


Sign in / Sign up

Export Citation Format

Share Document