Sensitivity of H-Reflexes and Stretch Reflexes to Presynaptic Inhibition in Humans

1998 ◽  
Vol 80 (2) ◽  
pp. 610-620 ◽  
Author(s):  
H. Morita ◽  
N. Petersen ◽  
L.O.D. Christensen ◽  
T. Sinkjær ◽  
J. Nielsen

Morita, H., N. Petersen, L.O.D. Christensen, T. Sinkjær, and J. Nielsen. Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans. J. Neurophysiol. 80: 610–620, 1998. The sensitivity of soleus H-reflexes, T-reflexes, and short-latency stretch reflexes (M1) to presynaptic inhibition evoked by a weak tap applied to the biceps femoris tendon or stimulation of the common peroneal nerve (CPN) was compared in 17 healthy human subjects. The H-reflex was strongly depressed for a period lasting up to 300–400 ms (depression to 48 ± 23%, mean ± SD, of control at a conditioning test interval of 70 ms) by the biceps femoris tendon tap. In contrast, the short-latency soleus stretch reflex elicited by a quick passive dorsiflexion of the ankle joint was not depressed. The soleus T-reflex elicited by an Achilles tendon tap was only weakly depressed (92 ± 8%). The H-reflex was also significantly more depressed than the T-reflex at long intervals (>15 ms) after stimulation of CPN (H-reflex 63 ± 14%, T-reflex 91 ± 13%; P < 0.01). However, the short-latency (2 ms) disynaptic reciprocal Ia inhibition evoked by stimulation of CPN was equally strong for H- and T-reflexes (H-reflex 72 ± 10%, T-reflex 67 ± 13%; P = 0.07). Peaks in the poststimulus time histogram (PSTH) of the discharge probability of single soleus motor units ( n = 53) elicited by an Achilles tendon tap had a longer duration than peaks evoked by electrical stimulation of the tibial nerve (on average 5.0 ms as compared with 2.7 ms). All parts of the electrically evoked peaks were depressed by the conditioning biceps femoris tendon tap (average depression to 55 ± 27% of control; P < 0.001). A similar depression was observed for the initial 2 ms of the peaks evoked by the Achilles tendon tap (69 ± 48%; P < 0.001), but the last 2 ms were not depressed. Conditioning stimulation of the CPN at long intervals (>15 ms) also depressed all parts of the electrically evoked PSTH peaks ( n = 34; average 65%; P < 0.001) but had only a significant effect on the initial 2 ms of the peaks evoked by the Achilles tendon tap (85%; P < 0.001). We suggest that the different sensitivity of mechanically and electrically evoked reflexes to presynaptic inhibition is caused by a difference in the shape and composition of the excitatory postsynaptic potentials underlying the two reflexes. This difference may be explained by a different composition and/or temporal dispersion of the afferent volleys evoked by electrical and mechanical stimuli. We conclude that it is not straightforward to predict the modulation of stretch reflexes based on observations of H-reflex modulation.

1990 ◽  
Vol 64 (2) ◽  
pp. 637-647 ◽  
Author(s):  
A. Mailis ◽  
P. Ashby

1. The hypothesis that the exaggerated tendon jerks and stretch reflexes that follow chronic spinal cord lesions in humans result from alterations in transmission from group I muscle afferents to motoneurons was tested by making observations on nine normal subjects and 25 patients with spinal cord lesions. All the patients had increased tendon jerks, one-third of them had both increased tendon jerks and increased, velocity-dependent stretch reflexes (i.e.g spasticity). 2. Changes in the firing probability of single, voluntary-activated soleus or tibialis anterior motor units during stimulation of the muscle nerve below the threshold of the alpha-motoneuron axons were used to derive the characteristics of the postsynaptic potentials produced by group I volleys in single motoneurons. Paired stimuli were used to test how multiple volleys in group I muscle afferents were transmitted to motoneurons. 3. Stimulation of the posterior tibial nerve produced a short-latency period of increased firing probability representing the homonymous composite Ia excitatory postsynaptic potential (EPSP) in all soleus motoneurons tested. There was no detectable alteration in the magnitude, duration, or profile of the short-latency facilitation in the patients with spinal lesions when compared with normal subjects. 4. In patients with traumatic spinal cord lesions less than 8 wk in duration the magnitude of the facilitation representing the composite Ia EPSP was significantly larger than normal, although only one out of the four patients in this group had spasticity. 5. In the patients with the greatest spasticity, group I volleys produced a second period of facilitation 11-15 ms after the facilitation representing the composite Ia EPSP. This is presumed to represent enhanced transmission through polysynaptic pathways from group I afferents to motoneurons. 6. In normal subjects the facilitation of motoneurons produced by the second of two group I volleys is greater 5 and 10 ms after the first volley and less 20, 30, and 50 ms after the first volley. These changes involve at least two factors: 1) changes in excitability of peripheral nerves and 2) changes in transmission at the Ia-motoneuron synapse. 7. In patients with spinal lesions the facilitation produced by the second of two muscle-afferent volleys was less depressed at the 30-ms interstimulus interval. 8. Thus two separate abnormalities have been uncovered in human subjects with chronic spinal lesions: 1) a change in the transmission of multiple volleys from muscle afferents to motoneurons and 2) an increase in transmission through polysynaptic pathways from Ia afferents to motoneurons. Both could contribute to the increased tendon jerks and exaggerated stretch reflexes.


1991 ◽  
Vol 66 (2) ◽  
pp. 613-622 ◽  
Author(s):  
B. I. Polus ◽  
A. Patak ◽  
J. E. Gregory ◽  
U. Proske

1. This is a report of the effects at different muscle lengths of the muscle's immediate history on the tendon jerk and Hoffman (H)-reflex in triceps surae of human subjects and cats. 2. In adult human subjects the size of the tendon jerk was measured as electromyogram (EMG) and torque in response to a tendon tap. Before each test tap the muscle was conditioned by a maximum voluntary contraction carried out with the foot either plantarflexed or dorsiflexed by 30 degrees from the test position. After a contraction with the foot dorsiflexed, the subsequent reflex response was smaller than after a contraction with the foot plantarflexed. 3. The same conditioning procedure was carried out with the H-reflex. The reflex was elicited by transcutaneous electrical stimulation of the tibial nerve in the popliteal fossa. Here the reflex after a contraction with the foot dorsiflexed was larger than after plantarflexion. In other words, the effects of conditioning were the opposite for the tendon jerk and H-reflex. 4. The effects of muscle conditioning were tested over a range of muscle lengths. As the test length was made progressively longer, that is, the foot more dorsiflexed, the difference in size of the tendon jerk following the two forms of conditioning became less, whereas for the H-reflex it remained the same. 5. These findings were confirmed in cats anesthetized with alpha-chloralose. The tendon jerk was elicited by a quick stretch applied to the triceps surae muscle group, and the H-reflex represented by the monosynaptic reflex recorded from the central, cut end of the ventral root in response to electrical stimulation of the triceps nerve. Muscle conditioning consisted of a 1-s period of stimulation at 20 pulses/s, at fusimotor strength, of the peripheral end of the cut ventral root at a muscle length 5 mm longer or shorter than the test length. In the cat, as in human subjects, the effect of conditioning on the tendon jerk reversed at long muscle lengths, whereas the monosynaptic reflex showed no reversal. 6. It had been proposed previously that the effects of conditioning on stretch reflexes could be explained by development of slack in the intrafusal fibers of muscle spindles after a contraction at a longer-than-test length. The presence of slack lowers the resting discharge of spindles and reduces the afferent response to a tendon tap.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 15 ◽  
Author(s):  
Trevor S. Barss ◽  
David F. Collins ◽  
Dylan Miller ◽  
Amit N. Pujari

The use of upper limb vibration (ULV) during exercise and rehabilitation continues to gain popularity as a modality to improve function and performance. Currently, a lack of knowledge of the pathways being altered during ULV limits its effective implementation. Therefore, the aim of this study was to investigate whether indirect ULV modulates transmission along spinal and corticospinal pathways that control the human forearm. All measures were assessed under CONTROL (no vibration) and ULV (30 Hz; 0.4 mm displacement) conditions while participants maintained a small contraction of the right flexor carpi radialis (FCR) muscle. To assess spinal pathways, Hoffmann reflexes (H-reflexes) elicited by stimulation of the median nerve were recorded from FCR with motor response (M-wave) amplitudes matched between conditions. An H-reflex conditioning paradigm was also used to assess changes in presynaptic inhibition by stimulating the superficial radial (SR) nerve (5 pulses at 300Hz) 37 ms prior to median nerve stimulation. Cutaneous reflexes in FCR elicited by stimulation of the SR nerve at the wrist were also recorded. To assess corticospinal pathways, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation of the contralateral motor cortex were recorded from the right FCR and biceps brachii (BB). ULV significantly reduced H-reflex amplitude by 15.7% for both conditioned and unconditioned reflexes (24.0 ± 15.7 vs. 18.4 ± 11.2% Mmax; p &lt; 0.05). Middle latency cutaneous reflexes were also significantly reduced by 20.0% from CONTROL (−1.50 ± 2.1% Mmax) to ULV (−1.73 ± 2.2% Mmax; p &lt; 0.05). There was no significant effect of ULV on MEP amplitude (p &gt; 0.05). Therefore, ULV inhibits cutaneous and H-reflex transmission without influencing corticospinal excitability of the forearm flexors suggesting increased presynaptic inhibition of afferent transmission as a likely mechanism. A general increase in inhibition of spinal pathways with ULV may have important implications for improving rehabilitation for individuals with spasticity (SCI, stroke, MS, etc.).


2020 ◽  
Author(s):  
Trevor S. Barss ◽  
David F. Collins ◽  
Dylan Miller ◽  
Amit N. Pujari

AbstractThe aim of this study was to investigate whether indirect upper limb vibration (ULV) modulates transmission along spinal and corticospinal pathways that control the human forearm. All measures were assessed under CONTROL (no vibration) and ULV (30 Hz; 0.4 mm displacement) conditions while participants maintained a small contraction of the right flexor carpi radialis (FCR) muscle. To assess spinal pathways, Hoffmann reflexes (H-reflexes) elicited by stimulation of the median nerve were recorded from FCR with motor response (M-wave) amplitudes matched between conditions. An H-reflex conditioning paradigm was also used to assess changes in presynaptic inhibition by stimulating the superficial radial (SR) nerve (5 pulses at 300Hz) 37 ms prior to median nerve stimulation. Cutaneous reflexes in FCR elicited by stimulation of the SR nerve at the wrist were also recorded. To assess corticospinal pathways, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation of the contralateral motor cortex were recorded from the right FCR and biceps brachii (BB). ULV significantly reduced H-reflex amplitude by 15.7% for both conditioned and unconditioned reflexes (24.0±15.7 vs 18.4±11.2 % Mmax; p<0.05). Middle latency cutaneous reflexes were also significantly reduced by 20.0% from CONTROL (−1.50 ± 2.1 % Mmax) to ULV (−1.73 ± 2.2 % Mmax; p<0.05). There was no significant effect of ULV on MEP amplitude (p>0.05). Therefore, ULV inhibits cutaneous and H-reflex transmission without influencing corticospinal excitability of the forearm flexors suggesting increased presynaptic inhibition of afferent transmission as a likely mechanism. A general increase in inhibition of spinal pathways with ULV may have important implications for improving rehabilitation for individuals with spasticity (SCI, stroke, MS, etc).


Women ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 71-79
Author(s):  
Akemi Sawai ◽  
Risa Mitsuhashi ◽  
Alexander Zaboronok ◽  
Yuki Warashina ◽  
Bryan J. Mathis

Chronic menstrual dysfunction and low female sex hormones adversely affect muscular performance in women but studies in college athletes are scarce. A cohort of 18 Japanese, female college athletes at the University of Tsukuba, Japan, were recruited and studied over 3 weeks under 2 conditions. One group had normal menstrual cycling (CYC, 9 athletes) while the other had irregular cycles (DYS, 9 athletes). Hormones and creatine kinase (CK) were measured from blood under both rest (RE) and exercise (EX) conditions. Biceps femoris tendon stiffness was measured by myometry. No differences in age, height, weight, menarche age, or one-repetition maximum weight existed between the groups. The DYS group had persistently low levels of estrogen and progesterone. In the CYC group, the CK level significantly increased at each point immediately post-exercise and 24 h post-exercise compared to pre-exercise in Weeks 1 and 2, and significantly increased at 24 h post-exercise compared to pre-exercise status in Week 3. The DYS group was significantly different only between pre-exercise and 24 h post-exercise over all 3 weeks. The DYS group also suffered from higher biceps femoris tendon stiffness at 24 h post-exercise. Chronic menstrual irregularities in Japanese college athletes increase muscle damage markers in the bloodstream and muscle stiffness after acute strength training.


Motor Control ◽  
2015 ◽  
Vol 19 (4) ◽  
pp. 253-270 ◽  
Author(s):  
Asger Roer Pedersen ◽  
Peter William Stubbs ◽  
Jørgen Feldbæk Nielsen

The aim was to investigate trial-by-trial response characteristics in the short-latency stretch reflex (SSR). Fourteen dorsiflexion stretches were applied to the ankle joint with a precontracted soleus muscle on 2 days. The magnitude and variability of trial-by-trial responses of the SSR were assessed. The SSR was log-normally distributed and variance heterogeneous between subjects. For some subjects, the magnitude and variance differed between days and stretches. As velocity increased, variance heterogeneity tended to decrease and response magnitude increased. The current study demonstrates the need to assess trial-by-trial response characteristics and not averaged curves. Moreover, it provides an analysis of SSR characteristics accounting for log-normally distributed and variance heterogeneous trial-by-trial responses.


2014 ◽  
Vol 116 (12) ◽  
pp. 1623-1631 ◽  
Author(s):  
Steffen Vangsgaard ◽  
Janet L. Taylor ◽  
Ernst A. Hansen ◽  
Pascal Madeleine

Trapezius muscle Hoffman (H) reflexes were obtained to investigate the neural adaptations induced by a 5-wk strength training regimen, based solely on eccentric contractions of the shoulder muscles. Twenty-nine healthy subjects were randomized into an eccentric training group ( n = 15) and a reference group ( n = 14). The eccentric training program consisted of nine training sessions of eccentric exercise performed over a 5-wk period. H-reflex recruitment curves, the maximal M wave (Mmax), maximal voluntary contraction (MVC) force, rate of force development (RFD), and electromyographic (EMG) voluntary activity were recorded before and after training. H reflexes were recorded from the middle part of the trapezius muscle by electrical stimulation of the C3/4 cervical nerves; Mmax was measured by electrical stimulation of the accessory nerve. Eccentric strength training resulted in significant increases in the maximal trapezius muscle H reflex (Hmax) (21.4% [5.5–37.3]; P = 0.01), MVC force (26.4% [15.0–37.7]; P < 0.01), and RFD (24.6% [3.2–46.0]; P = 0.025), while no significant changes were observed in the reference group. Mmax remained unchanged in both groups. A significant positive correlation was found between the change in MVC force and the change in EMG voluntary activity in the training group ( r = 0.57; P = 0.03). These results indicate that the net excitability of the trapezius muscle H-reflex pathway increased after 5 wk of eccentric training. This is the first study to investigate and document changes in the trapezius muscle H reflex following eccentric strength training.


1989 ◽  
Vol 62 (3) ◽  
pp. 711-722 ◽  
Author(s):  
T. Allison ◽  
G. McCarthy ◽  
C. C. Wood ◽  
P. D. Williamson ◽  
D. D. Spencer

1. The anatomic generators of human median nerve somatosensory evoked potentials (SEPs) in the 40 to 250-ms latency range were investigated in 54 patients by means of cortical-surface and transcortical recordings obtained during neurosurgery. 2. Contralateral stimulation evoked three groups of SEPs recorded from the hand representation area of sensorimotor cortex: P45-N80-P180, recorded anterior to the central sulcus (CS) and maximal on the precentral gyrus; N45-P80-N180, recorded posterior to the CS and maximal on the postcentral gyrus; and P50-N90-P190, recorded near and on either side of the CS. 3. P45-N80-P180 inverted in polarity to N45-P80-N180 across the CS but was similar in polarity from the cortical surface and white matter in transcortical recordings. These spatial distributions were similar to those of the short-latency P20-N30 and N20-P30 potentials described in the preceding paper, suggesting that these long-latency potentials are generated in area 3b of somatosensory cortex. 4. P50-N90-P190 was largest over the anterior one-half of somatosensory cortex and did not show polarity inversion across the CS. This spatial distribution was similar to that of the short-latency P25-N35 potentials described in the preceding paper and, together with our and Goldring et al. 1970; Stohr and Goldring 1969 transcortical recordings, suggest that these long-latency potentials are generated in area 1 of somatosensory cortex. 5. SEPs of apparently local origin were recorded from several regions of sensorimotor cortex to stimulation of the ipsilateral median nerve. Surface and transcortical recordings suggest that the ipsilateral potentials are generated not in area 3b, but rather in other regions of sensorimotor cortex perhaps including areas 4, 1, 2, and 7. This spatial distribution suggests that the ipsilateral potentials are generated by transcallosal input from the contralateral hemisphere. 6. Recordings from the periSylvian region were characterized by P100 and N100, recorded above and below the Sylvian sulcus (SS) respectively. This distribution suggests a tangential generator located in the upper wall of the SS in the second somatosensory area (SII). In addition, N125 and P200, recorded near and on either side of the SS, suggest a radial generator in a portion of SII located in surface cortex above the SS. 7. In comparison with the short-latency SEPs described in the preceding paper, the long-latency potentials were more variable and were more affected by intraoperative conditions.


Sign in / Sign up

Export Citation Format

Share Document