scholarly journals Motor Cortical Activity During Drawing Movements: Population Representation During Spiral Tracing

1999 ◽  
Vol 82 (5) ◽  
pp. 2693-2704 ◽  
Author(s):  
Daniel W. Moran ◽  
Andrew B. Schwartz

Monkeys traced spirals on a planar surface as unitary activity was recorded from either premotor or primary motor cortex. Using the population vector algorithm, the hand's trajectory could be accurately visualized with the cortical activity throughout the task. The time interval between this prediction and the corresponding movement varied linearly with the instantaneous radius of curvature; the prediction interval was longer when the path of the finger was more curved (smaller radius). The intervals in the premotor cortex fell into two groups, whereas those in the primary motor cortex formed a single group. This suggests that the change in prediction interval is a property of a single population in primary motor cortex, with the possibility that this outcome is due to the different properties generated by the simultaneous action of separate subpopulations in premotor cortex. Electromyographic (EMG) activity and joint kinematics were also measured in this task. These parameters varied harmonically throughout the task with many of the same characteristics as those of single cortical cells. Neither the lags between joint-angular velocities and hand velocity nor the lags between EMG and hand velocity could explain the changes in prediction interval between cortical activity and hand velocity. The simple spatial and temporal relationship between cortical activity and finger trajectory suggests that the figural aspects of this task are major components of cortical activity.

2021 ◽  
Vol 2 ◽  
Author(s):  
Oliver Seidel-Marzi ◽  
Susanne Hähner ◽  
Patrick Ragert ◽  
Daniel Carius

The ability to maintain balance is based on various processes of motor control in complex neural networks of subcortical and cortical brain structures. However, knowledge on brain processing during the execution of whole-body balance tasks is still limited. In the present study, we investigated brain activity during slacklining, a task with a high demand on balance capabilities, which is frequently used as supplementary training in various sports disciplines as well as for lower extremity prevention and rehabilitation purposes in clinical settings. We assessed hemodynamic response alterations in sensorimotor brain areas using functional near-infrared spectroscopy (fNIRS) during standing (ST) and walking (WA) on a slackline in 16 advanced slackliners. We expected to observe task-related differences between both conditions as well as associations between cortical activity and slacklining experience. While our results revealed hemodynamic response alterations in sensorimotor brain regions such as primary motor cortex (M1), premotor cortex (PMC), and supplementary motor cortex (SMA) during both conditions, we did not observe differential effects between ST and WA nor associations between cortical activity and slacklining experience. In summary, these findings provide novel insights into brain processing during a whole-body balance task and its relation to balance expertise. As maintaining balance is considered an important prerequisite in daily life and crucial in the context of prevention and rehabilitation, future studies should extend these findings by quantifying brain processing during task execution on a whole-brain level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martje G. Pauly ◽  
Annika Steinmeier ◽  
Christina Bolte ◽  
Feline Hamami ◽  
Elinor Tzvi ◽  
...  

AbstractNon-invasive brain stimulation techniques including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), paired associative stimulation (PAS), and transcranial direct current stimulation (tDCS) have been applied over the cerebellum to induce plasticity and gain insights into the interaction of the cerebellum with neo-cortical structures including the motor cortex. We compared the effects of 1 Hz rTMS, cTBS, PAS and tDCS given over the cerebellum on motor cortical excitability and interactions between the cerebellum and dorsal premotor cortex / primary motor cortex in two within subject designs in healthy controls. In experiment 1, rTMS, cTBS, PAS, and tDCS were applied over the cerebellum in 20 healthy subjects. In experiment 2, rTMS and PAS were compared to sham conditions in another group of 20 healthy subjects. In experiment 1, PAS reduced cortical excitability determined by motor evoked potentials (MEP) amplitudes, whereas rTMS increased motor thresholds and facilitated dorsal premotor-motor and cerebellum-motor cortex interactions. TDCS and cTBS had no significant effects. In experiment 2, MEP amplitudes increased after rTMS and motor thresholds following PAS. Analysis of all participants who received rTMS and PAS showed that MEP amplitudes were reduced after PAS and increased following rTMS. rTMS also caused facilitation of dorsal premotor-motor cortex and cerebellum-motor cortex interactions. In summary, cerebellar 1 Hz rTMS and PAS can effectively induce plasticity in cerebello-(premotor)-motor pathways provided larger samples are studied.


2021 ◽  
pp. 0271678X2110029
Author(s):  
Mitsouko van Assche ◽  
Elisabeth Dirren ◽  
Alexia Bourgeois ◽  
Andreas Kleinschmidt ◽  
Jonas Richiardi ◽  
...  

After stroke restricted to the primary motor cortex (M1), it is uncertain whether network reorganization associated with recovery involves the periinfarct or more remote regions. We studied 16 patients with focal M1 stroke and hand paresis. Motor function and resting-state MRI functional connectivity (FC) were assessed at three time points: acute (<10 days), early subacute (3 weeks), and late subacute (3 months). FC correlates of recovery were investigated at three spatial scales, (i) ipsilesional non-infarcted M1, (ii) core motor network (M1, premotor cortex (PMC), supplementary motor area (SMA), and primary somatosensory cortex), and (iii) extended motor network including all regions structurally connected to the upper limb representation of M1. Hand dexterity was impaired only in the acute phase ( P = 0.036). At a small spatial scale, clinical recovery was more frequently associated with connections involving ipsilesional non-infarcted M1 (Odds Ratio = 6.29; P = 0.036). At a larger scale, recovery correlated with increased FC strength in the core network compared to the extended motor network (rho = 0.71; P = 0.006). These results suggest that FC changes associated with motor improvement involve the perilesional M1 and do not extend beyond the core motor network. Core motor regions, and more specifically ipsilesional non-infarcted M1, could hence become primary targets for restorative therapies.


2007 ◽  
Vol 578 (2) ◽  
pp. 551-562 ◽  
Author(s):  
Giacomo Koch ◽  
Michele Franca ◽  
Hitoshi Mochizuki ◽  
Barbara Marconi ◽  
Carlo Caltagirone ◽  
...  

Stroke ◽  
2021 ◽  
Author(s):  
Robert Schulz ◽  
Marlene Bönstrup ◽  
Stephanie Guder ◽  
Jingchun Liu ◽  
Benedikt Frey ◽  
...  

Background and Purpose: Cortical beta oscillations are reported to serve as robust measures of the integrity of the human motor system. Their alterations after stroke, such as reduced movement-related beta desynchronization in the primary motor cortex, have been repeatedly related to the level of impairment. However, there is only little data whether such measures of brain function might directly relate to structural brain changes after stroke. Methods: This multimodal study investigated 18 well-recovered patients with stroke (mean age 65 years, 12 males) by means of task-related EEG and diffusion-weighted structural MRI 3 months after stroke. Beta power at rest and movement-related beta desynchronization was assessed in 3 key motor areas of the ipsilesional hemisphere that are the primary motor cortex (M1), the ventral premotor area and the supplementary motor area. Template trajectories of corticospinal tracts (CST) originating from M1, premotor cortex, and supplementary motor area were used to quantify the microstructural state of CST subcomponents. Linear mixed-effects analyses were used to relate tract-related mean fractional anisotropy to EEG measures. Results: In the present cohort, we detected statistically significant reductions in ipsilesional CST fractional anisotropy but no alterations in EEG measures when compared with healthy controls. However, in patients with stroke, there was a significant association between both beta power at rest ( P =0.002) and movement-related beta desynchronization ( P =0.003) in M1 and fractional anisotropy of the CST specifically originating from M1. Similar structure-function relationships were neither evident for ventral premotor area and supplementary motor area, particularly with respect to their CST subcomponents originating from premotor cortex and supplementary motor area, in patients with stroke nor in controls. Conclusions: These data suggest there might be a link connecting microstructure of the CST originating from M1 pyramidal neurons and beta oscillatory activity, measures which have already been related to motor impairment in patients with stroke by previous reports.


2013 ◽  
Vol 110 (5) ◽  
pp. 1180-1189 ◽  
Author(s):  
Gustaf M. Van Acker ◽  
Sommer L. Amundsen ◽  
William G. Messamore ◽  
Hongyu Y. Zhang ◽  
Carl W. Luchies ◽  
...  

High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied to motor cortex is recognized as a useful and informative method for corticomotor mapping by evoking natural-appearing movements of the limb to consistent stable end-point positions. An important feature of these movements is that stimulation of a specific site in motor cortex evokes movement to the same spatial end point regardless of the starting position of the limb. The goal of this study was to delineate effective stimulus parameters for evoking forelimb movements to stable spatial end points from HFLD-ICMS applied to primary motor cortex (M1) in awake monkeys. We investigated stimulation of M1 as combinations of frequency (30–400 Hz), amplitude (30–200 μA), and duration (0.5–2 s) while concurrently recording electromyographic (EMG) activity from 24 forelimb muscles and movement kinematics with a motion capture system. Our results suggest a range of parameters (80–140 Hz, 80–140 μA, and 1,000-ms train duration) that are effective and safe for evoking forelimb translocation with subsequent stabilization at a spatial end point. The mean time for stimulation to elicit successful movement of the forelimb to a stable spatial end point was 475.8 ± 170.9 ms. Median successful frequency and amplitude were 110 Hz and 110 μA, respectively. Attenuated parameters resulted in inconsistent, truncated, or undetectable movements, while intensified parameters yielded no change to movement end points and increased potential for large-scale physiological spread and adverse focal motor effects. Establishing cortical stimulation parameters yielding consistent forelimb movements to stable spatial end points forms the basis for a systematic and comprehensive mapping of M1 in terms of evoked movements and associated muscle synergies. Additionally, the results increase our understanding of how the central nervous system may encode movement.


NeuroImage ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 500-509 ◽  
Author(s):  
Sergiu Groppa ◽  
Nicole Werner-Petroll ◽  
Alexander Münchau ◽  
Günther Deuschl ◽  
Matthew F.S. Ruschworth ◽  
...  

1988 ◽  
Vol 59 (3) ◽  
pp. 796-818 ◽  
Author(s):  
C. S. Huang ◽  
M. A. Sirisko ◽  
H. Hiraba ◽  
G. M. Murray ◽  
B. J. Sessle

1. The technique of intracortical microstimulation (ICMS), supplemented by single-neuron recording, was used to carry out an extensive mapping of the face primary motor cortex. The ICMS study involved a total of 969 microelectrode penetrations carried out in 10 unanesthetized monkeys (Macaca fascicularis). 2. Monitoring of ICMS-evoked movements and associated electromyographic (EMG) activity revealed a general pattern of motor cortical organization. This was characterized by a representation of the facial musculature, which partially enclosed and overlapped the rostral, medial, and caudal borders of the more laterally located cortical regions representing the jaw and tongue musculatures. Responses were evoked at ICMS thresholds as low as 1 microA, and the latency of the suprathreshold EMG responses ranged from 10 to 45 ms. 3. Although contralateral movements predominated, a representation of ipsilateral movements was found, which was much more extensive than previously reported and which was intermingled with the contralateral representations in the anterior face motor cortex. 4. In examining the fine organizational pattern of the representations, we found clear evidence for multiple representation of a particular muscle, thus supporting other investigations of the motor cortex, which indicate that multiple, yet discrete, efferent microzones represent an essential organizational principle of the motor cortex. 5. The close interrelationship of the representations of all three muscle groups, as well as the presence of a considerable ipsilateral representation, may allow for the necessary integration of unilateral or bilateral activities of the numerous face, jaw, and tongue muscles, which is a feature of many of the movement patterns in which these various muscles participate. 6. In six of these same animals, plus an additional two animals, single-neuron recordings were made in the motor and adjacent sensory cortices in the anesthetized state. These neurons were electrophysiologically identified as corticobulbar projection neurons or as nonprojection neurons responsive to superficial or deep orofacial afferent inputs. The rostral, medial, lateral, and caudal borders of the face motor cortex were delineated with greater definition by ICMS and these electrophysiological procedures than by cytoarchitectonic features alone. We noted that there was an approximate fit in area 4 between the extent of projection neurons and field potentials anti-dromically evoked from the brain stem and the extent of positive ICMS sites.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document