scholarly journals Periinfarct rewiring supports recovery after primary motor cortex stroke

2021 ◽  
pp. 0271678X2110029
Author(s):  
Mitsouko van Assche ◽  
Elisabeth Dirren ◽  
Alexia Bourgeois ◽  
Andreas Kleinschmidt ◽  
Jonas Richiardi ◽  
...  

After stroke restricted to the primary motor cortex (M1), it is uncertain whether network reorganization associated with recovery involves the periinfarct or more remote regions. We studied 16 patients with focal M1 stroke and hand paresis. Motor function and resting-state MRI functional connectivity (FC) were assessed at three time points: acute (<10 days), early subacute (3 weeks), and late subacute (3 months). FC correlates of recovery were investigated at three spatial scales, (i) ipsilesional non-infarcted M1, (ii) core motor network (M1, premotor cortex (PMC), supplementary motor area (SMA), and primary somatosensory cortex), and (iii) extended motor network including all regions structurally connected to the upper limb representation of M1. Hand dexterity was impaired only in the acute phase ( P = 0.036). At a small spatial scale, clinical recovery was more frequently associated with connections involving ipsilesional non-infarcted M1 (Odds Ratio = 6.29; P = 0.036). At a larger scale, recovery correlated with increased FC strength in the core network compared to the extended motor network (rho = 0.71; P = 0.006). These results suggest that FC changes associated with motor improvement involve the perilesional M1 and do not extend beyond the core motor network. Core motor regions, and more specifically ipsilesional non-infarcted M1, could hence become primary targets for restorative therapies.

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Mitsouko van Assche ◽  
Elisabeth Dirren ◽  
Alexia Bourgeois ◽  
Andreas Kleinschmidt ◽  
Jonas Richiardi ◽  
...  

Background and Purpose: After stroke restricted to the primary motor cortex (M1), it is uncertain whether network reorganization associated with motor recovery involves the periinfarct or more remote brain regions. In humans, the challenge is to recruit patients with similar lesions in size and location. Methods: We studied 16 patients with focal M1 stroke and hand paresis. Motor function and resting-state MRI functional connectivity (FC) were studied at three time points: acute (<10 days), early subacute (3 weeks), and late subacute (3 months). FC correlates of motor recovery were investigated at three spatial scales, i) ipsilesional non-infarcted M1, ii) core motor network (including M1, premotor cortex (PMC), supplementary motor area (SMA), and primary somatosensory cortex), and iii) extended motor network including all regions structurally connected to the upper limb representation of M1. Results: Hand dexterity was impaired only in the acute phase ( P =0.036). At a small spatial scale, improved dexterity was associated with increased FC involving mainly the ipsilesional non-infarcted M1 and contralesional motor regions (cM1: rho=0.732; P =0.004; cPMC: rho=0.837, P <0.001; cSMA: rho=0.736; P =0.004). At a larger scale, motor recovery correlated with the relative increase in total FC strength in the core motor network compared to the extended motor network (rho=0.71; P =0.006). Conclusions: FC changes associated with motor improvement involve the perilesional M1 and do not extend beyond the core motor network. The ipsilesional non-infarcted M1 and core motor regions could hence be primary targets for future restorative therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martje G. Pauly ◽  
Annika Steinmeier ◽  
Christina Bolte ◽  
Feline Hamami ◽  
Elinor Tzvi ◽  
...  

AbstractNon-invasive brain stimulation techniques including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), paired associative stimulation (PAS), and transcranial direct current stimulation (tDCS) have been applied over the cerebellum to induce plasticity and gain insights into the interaction of the cerebellum with neo-cortical structures including the motor cortex. We compared the effects of 1 Hz rTMS, cTBS, PAS and tDCS given over the cerebellum on motor cortical excitability and interactions between the cerebellum and dorsal premotor cortex / primary motor cortex in two within subject designs in healthy controls. In experiment 1, rTMS, cTBS, PAS, and tDCS were applied over the cerebellum in 20 healthy subjects. In experiment 2, rTMS and PAS were compared to sham conditions in another group of 20 healthy subjects. In experiment 1, PAS reduced cortical excitability determined by motor evoked potentials (MEP) amplitudes, whereas rTMS increased motor thresholds and facilitated dorsal premotor-motor and cerebellum-motor cortex interactions. TDCS and cTBS had no significant effects. In experiment 2, MEP amplitudes increased after rTMS and motor thresholds following PAS. Analysis of all participants who received rTMS and PAS showed that MEP amplitudes were reduced after PAS and increased following rTMS. rTMS also caused facilitation of dorsal premotor-motor cortex and cerebellum-motor cortex interactions. In summary, cerebellar 1 Hz rTMS and PAS can effectively induce plasticity in cerebello-(premotor)-motor pathways provided larger samples are studied.


2007 ◽  
Vol 578 (2) ◽  
pp. 551-562 ◽  
Author(s):  
Giacomo Koch ◽  
Michele Franca ◽  
Hitoshi Mochizuki ◽  
Barbara Marconi ◽  
Carlo Caltagirone ◽  
...  

Stroke ◽  
2021 ◽  
Author(s):  
Robert Schulz ◽  
Marlene Bönstrup ◽  
Stephanie Guder ◽  
Jingchun Liu ◽  
Benedikt Frey ◽  
...  

Background and Purpose: Cortical beta oscillations are reported to serve as robust measures of the integrity of the human motor system. Their alterations after stroke, such as reduced movement-related beta desynchronization in the primary motor cortex, have been repeatedly related to the level of impairment. However, there is only little data whether such measures of brain function might directly relate to structural brain changes after stroke. Methods: This multimodal study investigated 18 well-recovered patients with stroke (mean age 65 years, 12 males) by means of task-related EEG and diffusion-weighted structural MRI 3 months after stroke. Beta power at rest and movement-related beta desynchronization was assessed in 3 key motor areas of the ipsilesional hemisphere that are the primary motor cortex (M1), the ventral premotor area and the supplementary motor area. Template trajectories of corticospinal tracts (CST) originating from M1, premotor cortex, and supplementary motor area were used to quantify the microstructural state of CST subcomponents. Linear mixed-effects analyses were used to relate tract-related mean fractional anisotropy to EEG measures. Results: In the present cohort, we detected statistically significant reductions in ipsilesional CST fractional anisotropy but no alterations in EEG measures when compared with healthy controls. However, in patients with stroke, there was a significant association between both beta power at rest ( P =0.002) and movement-related beta desynchronization ( P =0.003) in M1 and fractional anisotropy of the CST specifically originating from M1. Similar structure-function relationships were neither evident for ventral premotor area and supplementary motor area, particularly with respect to their CST subcomponents originating from premotor cortex and supplementary motor area, in patients with stroke nor in controls. Conclusions: These data suggest there might be a link connecting microstructure of the CST originating from M1 pyramidal neurons and beta oscillatory activity, measures which have already been related to motor impairment in patients with stroke by previous reports.


1999 ◽  
Vol 82 (5) ◽  
pp. 2693-2704 ◽  
Author(s):  
Daniel W. Moran ◽  
Andrew B. Schwartz

Monkeys traced spirals on a planar surface as unitary activity was recorded from either premotor or primary motor cortex. Using the population vector algorithm, the hand's trajectory could be accurately visualized with the cortical activity throughout the task. The time interval between this prediction and the corresponding movement varied linearly with the instantaneous radius of curvature; the prediction interval was longer when the path of the finger was more curved (smaller radius). The intervals in the premotor cortex fell into two groups, whereas those in the primary motor cortex formed a single group. This suggests that the change in prediction interval is a property of a single population in primary motor cortex, with the possibility that this outcome is due to the different properties generated by the simultaneous action of separate subpopulations in premotor cortex. Electromyographic (EMG) activity and joint kinematics were also measured in this task. These parameters varied harmonically throughout the task with many of the same characteristics as those of single cortical cells. Neither the lags between joint-angular velocities and hand velocity nor the lags between EMG and hand velocity could explain the changes in prediction interval between cortical activity and hand velocity. The simple spatial and temporal relationship between cortical activity and finger trajectory suggests that the figural aspects of this task are major components of cortical activity.


2015 ◽  
Vol 36 (1) ◽  
pp. 301-303 ◽  
Author(s):  
Zhen Ni ◽  
Reina Isayama ◽  
Gabriel Castillo ◽  
Carolyn Gunraj ◽  
Utpal Saha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document