Coupled Oscillator Model of the Dopaminergic Neuron of the Substantia Nigra

2000 ◽  
Vol 83 (5) ◽  
pp. 3084-3100 ◽  
Author(s):  
C. J. Wilson ◽  
J. C. Callaway

Calcium imaging using fura-2 and whole cell recording revealed the effective location of the oscillator mechanism on dopaminergic neurons of the substantia nigra, pars compacta, in slices from rats aged 15–20 days. As previously reported, dopaminergic neurons fired in a slow rhythmic single spiking pattern. The underlying membrane potential oscillation survived blockade of sodium currents with TTX and was enhanced by blockade of voltage-sensitive potassium currents with TEA. Calcium levels increased during the subthreshold depolarizing phase of the membrane potential oscillation and peaked at the onset of the hyperpolarizing phase as expected if the pacemaker potential were due to a low-threshold calcium current and the hyperpolarizing phase to calcium-dependent potassium current. Calcium oscillations were synchronous in the dendrites and soma and were greater in the dendrites than in the soma. Average calcium levels in the dendrites overshot steady-state levels and decayed over the course of seconds after the oscillation was resumed after having been halted by hyperpolarizing currents. Average calcium levels in the soma increased slowly, taking many cycles to achieve steady state. Voltage clamp with calcium imaging revealed the voltage dependence of the somatic calcium current without the artifacts of incomplete spatial voltage control. This showed that the calcium current had little or no inactivation and was half-maximal at −40 to −30 mV. The time constant of calcium removal was measured by the return of calcium to resting levels and depended on diameter. The calcium sensitivity of the calcium-dependent potassium current was estimated by plotting the slow tail current against calcium concentration during the decay of calcium to resting levels at −60 mV. A single compartment model of the dopaminergic neuron consisting of a noninactivating low-threshold calcium current, a calcium-dependent potassium current, and a small leak current reproduced most features of the membrane potential oscillations. The same currents much more accurately reproduced the calcium transients when distributed uniformly along a tapering cable in a multicompartment model. This model represented the dopaminergic neuron as a set of electrically coupled oscillators with different natural frequencies. Each frequency was determined by the surface area to volume ratio of the compartment. This model could account for additional features of the dopaminergic neurons seen in slices, such as slow adaptation of oscillation frequency and may produce irregular firing under different coupling conditions.

2018 ◽  
Vol 119 (6) ◽  
pp. 2358-2372 ◽  
Author(s):  
Yimy Amarillo ◽  
Angela I. Tissone ◽  
Germán Mato ◽  
Marcela S. Nadal

Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (<4 Hz), which are the physiological oscillations during non-rapid eye movement sleep or pathological oscillations during idiopathic epilepsy. The pacemaker activity of TC neurons depends on the expression of several subthreshold conductances, which are modulated in a behaviorally dependent manner. Here we show that upregulation of the small and neglected inward rectifier potassium current IKir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of IKir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of IKir and hyperpolarization-activated cationic current Ih that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that IKir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with Ih and increases the robustness of low threshold-activated calcium current IT-mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current IKir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that IKir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current Ih; and increases the robustness of oscillations mediated by the low threshold-activated calcium current IT. Upregulation of IKir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).


1999 ◽  
Vol 115 (1) ◽  
pp. 3-16 ◽  
Author(s):  
D.A. Kraaij ◽  
H. Spekreijse ◽  
M. Kamermans

Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround responses of bipolar cells have been recorded on many occasions, surprisingly, the underlying surround-induced responses in cones are not easily detected. In this paper, the nature of the surround-induced responses in cones is studied. Horizontal cells feed back to cones by shifting the activation function of the calcium current in cones to more negative potentials. This shift increases the calcium influx, which increases the neurotransmitter release of the cone. In this paper, we will show that under certain conditions, in addition to this increase of neurotransmitter release, a calcium-dependent chloride current will be activated, which polarizes the cone membrane potential. The question is, whether the modulation of the calcium current or the polarization of the cone membrane potential is the major determinant for feedback-mediated responses in second-order neurons. Depolarizing light responses of biphasic horizontal cells are generated by feedback from monophasic horizontal cells to cones. It was found that niflumic acid blocks the feedback-induced depolarizing responses in cones, while the shift of the calcium current activation function and the depolarizing biphasic horizontal cell responses remain intact. This shows that horizontal cells can feed back to cones, without inducing major changes in the cone membrane potential. This makes the feedback synapse from horizontal cells to cones a unique synapse. Polarization of the presynaptic (horizontal) cell leads to calcium influx in the postsynaptic cell (cone), but due to the combined activity of the calcium current and the calcium-dependent chloride current, the membrane potential of the postsynaptic cell will be hardly modulated, whereas the output of the postsynaptic cell will be strongly modulated. Since no polarization of the postsynaptic cell is needed for these feedback-mediated responses, this mechanism of synaptic transmission can modulate the neurotransmitter release in single synaptic terminals without affecting the membrane potential of the entire cell.


1987 ◽  
Vol 252 (4) ◽  
pp. H867-H871
Author(s):  
D. L. Kunze

A preparation of cells isolated from the medial and dorsal nuclei of the solitary tract of the medulla of adult guinea pigs was developed to examine the electrical properties of neurons isolated from an area of the central nervous system which is involved in the control of arterial pressure and heart rate. Bipolar cells of approximately 10 microns diameter were obtained on enzymatic dispersion. The cells were studied with the use of the patch technique for whole cell recording. Action potentials were elicited by depolarizing pulses in the presence of 10(-5) M tetrodotoxin which blocked a sodium-dependent current. These action potentials were calcium dependent and were eliminated by adding 1 mM Cd to the bath. In all cells studied, two voltage-dependent components to the calcium current were identified. In 10 mM Ca a high-threshold component activated at approximately -20 mV from holding potentials of -30 mV. A second lower threshold component was activated at -40 mV from more negative holding potentials of -80 mV. The low-threshold component was rapidly inactivating, whereas the high-threshold current slowly inactivated. The peak amplitudes of the two components were similar. Both components were blocked by 1 mM Cd. A role for the low-threshold calcium current in generating repetitive activity is postulated.


2016 ◽  
Vol 116 (4) ◽  
pp. 1752-1764 ◽  
Author(s):  
S. C. Song ◽  
J. A. Beatty ◽  
C. J. Wilson

Striatal low-threshold spiking (LTS) interneurons spontaneously transition to a depolarized, oscillating state similar to that seen after sodium channels are blocked. In the depolarized state, whether spontaneous or induced by sodium channel blockade, the neurons express a 3- to 7-Hz oscillation and membrane impedance resonance in the same frequency range. The membrane potential oscillation and membrane resonance are expressed in the same voltage range (greater than −40 mV). We identified and recorded from LTS interneurons in striatal slices from a mouse that expressed green fluorescent protein under the control of the neuropeptide Y promoter. The membrane potential oscillation depended on voltage-gated calcium channels. Antagonism of L-type calcium currents (CaV1) reduced the amplitude of the oscillation, whereas blockade of N-type calcium currents (CaV2.2) reduced the frequency. Both calcium sources activate a calcium-activated chloride current (CaCC), the blockade of which abolished the oscillation. The blocking of any of these three channels abolished the membrane resonance. Immunohistochemical staining indicated anoctamin 2 (ANO2), and not ANO1, as the CaCC source. Biophysical modeling showed that CaV1, CaV2.2, and ANO2 are sufficient to generate a membrane potential oscillation and membrane resonance, similar to that in LTS interneurons. LTS interneurons exhibit a membrane potential oscillation and membrane resonance that are both generated by CaV1 and CaV2.2 activating ANO2. They can spontaneously enter a state in which the membrane potential oscillation dominates the physiological properties of the neuron.


1997 ◽  
Vol 200 (6) ◽  
pp. 963-974
Author(s):  
R Dicaprio ◽  
G Jordan ◽  
T Hampton

The central pattern generator responsible for the gill ventilation rhythm in the shore crab Carcinus maenas can produce a functional motor pattern over a large (eightfold) range of cycle frequencies. One way to continue to generate a functional motor pattern over such a large frequency range would be to maintain the relative timing (phase) of the motor pattern as cycle frequency changes. This hypothesis was tested by measuring the phase of eight events in the motor pattern from extracellular recordings at different rhythm frequencies. The motor pattern was found to maintain relatively constant phase relationships among the various motor bursts in this rhythm over a large (sevenfold) range of cycle frequencies, although two phase-maintaining subgroups could be distinguished. Underlying this phase maintenance is a corresponding change in the time delay between events in the motor pattern ranging from 470 to 1800 ms over a sevenfold (300&shy;2100 ms) change in cycle period. Intracellular recordings from ventilatory neurons indicate that there is very little change in the membrane potential oscillation in the motor neurons with changes in cycle frequency. However, recordings from nonspiking interneurons in the ventilatory central pattern generator reveal that the rate of change of the membrane potential oscillation of these neurons varies in proportion to changes in cycle frequency. The strict biomechanical requirements for efficient pumping by the gill bailer, and the fact that work is performed in all phases of the motor pattern, may require that this motor pattern maintain phase at all rhythm frequencies.


Sign in / Sign up

Export Citation Format

Share Document