Altered Dentate Filtering During the Transition to Seizure in the Rat Tetanus Toxin Model of Epilepsy

2001 ◽  
Vol 86 (6) ◽  
pp. 2748-2753 ◽  
Author(s):  
G. T. Finnerty ◽  
M. A. Whittington ◽  
J.G.R. Jefferys

The dentate gyrus is thought to be a key area in containing the spread of seizure discharges in temporal lobe epilepsy. We investigated whether it actively contributes to the transition to seizure in vivo using the tetanus toxin chronic experimental epilepsy. Brief epileptic discharges lasted <2 s in freely moving animals and were clearly distinguishable from spontaneous seizures that lasted tens of seconds. This suggested that the changes underpinning the transition to seizure started within the first few seconds of seizure onset. During this period, we found that the amplitude of dentate gyrus population spikes depressed initially, but from 1.1 s after seizure onset, they potentiated. The amplitude and number of CA3 population spikes paralleled the pattern found in the dentate gyrus. We used hippocampal slices to study dentate filtering in more detail. The perforant pathway was stimulated repetitively at the frequency of field postsynaptic potentials found during epileptic discharges in vivo. The amplitude of dentate gyrus population spikes decreased to a steady state in naı̈ve hippocampal slices. In hippocampal slices prepared from rats previously injected with tetanus toxin, population spike amplitude decreased transiently and then potentiated. We found that the biphasic profile and rate of potentiation of dentate population spikes in vivo can be reproduced in naı̈ve hippocampal slices by blocking GABAB receptors. We conclude that the filtering properties of the dentate gyrus are altered in the tetanus toxin model of epilepsy and propose how this contributes to the transition to seizure in our animals.

1989 ◽  
Vol 62 (2) ◽  
pp. 458-468 ◽  
Author(s):  
J. G. Jefferys

1. Minute doses of tetanus toxin were injected into the hippocampi of rats, under pentobarbitone anesthesia, to induce a chronic experimental epilepsy. The effects of this treatment were studied in vitro in hippocampal slices prepared 1-60 days after injection. 2. Epileptic activity was preserved in these slices in vitro, closely resembling that seen in vivo. Epileptiform afterdischarges were evoked by stimulation after survival times of greater than or equal to 3 days from injection. Spontaneous synchronous epileptic discharges were recorded from 7 days after injection. Both kinds of epileptiform activity were found with survival times up to 36 days but not beyond 44 days. This time course resembles the waxing and waning of the epileptic syndrome in vivo. 3. Two distinct types of spontaneous burst were seen. The first was a simple burst lasting 100-300 ms, reminiscent of the "interictal spike" of the clinical electroencephalogram. The second was much more prolonged, lasting several seconds. It consisted of a simple burst followed by a series of discrete afterbursts at 3-6/s and resembled the early stages of an epileptic seizure. Both types of burst were associated with slow field potentials that were positive at the cell-body layer. 4. Both the interictal and the seizure-like spontaneous epileptic discharges originated in the CA3b/c pyramidal cell region and propagated at 0.1-0.25 m/s along the cell layer toward the CA1 region. They occurred at very variable intervals, ranging from 20 s to 30 min. 5. Spontaneous epileptic bursts occurred in media containing 3 mM [K+]o to 5 mM in one-third of experiments during the period 1-4 wk after injection. Spontaneous bursts could be induced by increasing [K+]o to 5 mM in two-thirds of the remaining slices, which initially had produced evoked afterdischarges. 6. Intracellular recordings revealed that spontaneous field bursts were invariably associated with paroxysmal depolarization shifts (PDSs) and bursts of action potentials, suggesting that almost all the pyramidal cells in the region were recruited into the epileptic discharges. In some cells, smaller abnormal depolarizations were also seen; they were clearly larger than the spontaneous synaptic potentials but were not associated with field potentials. They may have been due to a more limited recruitment of pyramidal cells into partially synchronous bursts. 7. The tetanus toxin experimental epileptic syndrome differs from chronic models described previously in retaining in the hippocampal slice in vitro much of the spontaneous epileptic activity seen in vivo in the freely moving chronically epileptic rat.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 88 (6) ◽  
pp. 2919-2927 ◽  
Author(s):  
G. T. Finnerty ◽  
J.G.R. Jefferys

A key question in epilepsy is the organization and size of the neuronal networks necessary for generating seizures. Hypotheses include: a single focal neuronal network drives seizure discharges across the brain, which may or may not be identical with the circuits that generate interictal spikes; or multiple neuronal networks link together in re-entrant loops or other long-range networks. It remains unclear whether any of these hypotheses apply to spontaneous seizures in freely moving animals. We used the tetanus toxin chronic model of epilepsy to test the different predictions made by each hypothesis about the propagation and interaction of epileptic discharges during seizures. Seizures could start in either the injected or noninjected dorsal hippocampus, suggesting that seizures have multifocal onsets in the tetanus toxin model. During seizures, individual bursts propagated in either direction, both between the right and left dorsal hippocampi, and between CA3 and the dentate gyrus in the same hippocampus. These findings argue against one site “driving” seizures or seizures propagating around a limbic loop. Specifically, the side leading each burst switched a median of three times during the first 20 s of a seizure. Analysis of bursts during seizures suggested that the network at each recording site acted like a neuronal oscillator. Coupling of population spikes in right and left CA3 increased during the early part of seizures, but the cross-correlation of their whole-discharge waveforms changed little over the same period. Furthermore, the polarity of the phase difference between population spikes did not follow the phase difference for complete discharges. We concluded that the neuronal aggregate necessary for seizures in our animals comprises multiple spatially distributed neuronal networks and that the increased synchrony of the output (population spike firing) of these networks during the early part of seizures may contribute to seizure generation.


2008 ◽  
Vol 99 (5) ◽  
pp. 2431-2442 ◽  
Author(s):  
Mark R. Bower ◽  
Paul S. Buckmaster

Although much is known about persistent molecular, cellular, and circuit changes associated with temporal lobe epilepsy, mechanisms of seizure onset remain unclear. The dentate gyrus displays many persistent epilepsy-related abnormalities and is in the mesial temporal lobe where seizures initiate in patients. However, little is known about seizure-related activity of individual neurons in the dentate gyrus. We used tetrodes to record action potentials of multiple, single granule cells before and during spontaneous seizures in epileptic pilocarpine-treated rats. Subsets of granule cells displayed four distinct activity patterns: increased firing before seizure onset, decreased firing before seizure onset, increased firing only after seizure onset, and unchanged firing rates despite electrographic seizure activity in the immediate vicinity. No cells decreased firing rate immediately after seizure onset. During baseline periods between seizures, action potential waveforms and firing rates were similar among the four subsets of granule cells in epileptic rats and in granule cells of control rats. The mean normalized firing rate of granule cells whose firing rates increased before seizure onset deviated from baseline earliest, beginning 4 min before dentate gyrus electrographic seizure onset, and increased progressively, more than doubling by seizure onset. It is generally assumed that neuronal firing rates increase abruptly and synchronously only when electrographic seizures begin. However, these findings show heterogeneous and gradually building changes in activity of individual granule cells minutes before spontaneous seizures.


2002 ◽  
Vol 88 (2) ◽  
pp. 783-793 ◽  
Author(s):  
Paul S. Buckmaster ◽  
Emilia H. Wong

When they are 1–2 mo old, domesticated Mongolian gerbils begin having initially mild seizures which become more severe with age. To evaluate the development of this increasing seizure severity, we obtained field potential responses of the dentate gyrus to paired-pulse stimulation of the perforant path during seizures. In 18 gerbils that were 1.5–8.0 mo old, 73 seizures were analyzed. We measured population spike amplitude, the slope of the field excitatory postsynaptic potential (fEPSP), and the population spike amplitude ratio (2nd/1st) to evaluate excitatory and inhibitory synaptic processes. In gerbils <2 mo old, exposure to a novel environment was followed by an increase in population spike amplitude and then by seizure onset, but population spike amplitude ratio and fEPSP slope remained at baseline levels, and multiple population spikes were never evoked. As previously reported for chronically epileptic gerbils, these findings provide little evidence of a disinhibitory seizure-initiating mechanism in the dentate gyrus when young gerbils begin having seizures. In young gerbils evoked responses changed little during the behaviorally mild seizures. In contrast, most seizures in older gerbils included generalized convulsions, postictal depression, and evoked responses that changed dramatically. In older gerbils, shortly after seizure onset the dentate gyrus became hyperexcitable. Population spike amplitude and fEPSP slope peaked, and multiple population spikes were evoked, suggesting that mechanisms for seizure amplification and spread are more developed in older gerbils. Next, dentate gyrus excitability decreased precipitously, and population spike amplitude and fEPSP slope diminished. This period of hypoexcitability began before the end of the seizure, suggesting it may contribute to seizure termination. After the convulsive phase of the seizure, older gerbils remained motionless during a period of postictal depression, and population spike amplitude remained suppressed until the abrupt switch to normal exploratory activity. These findings suggest that the mechanisms of postictal depression may suppress granule cell excitability. The population spike amplitude ratio peaked after the convulsive phase and then gradually returned to the baseline level an average of 12 min after seizure onset, suggesting that granule cell inhibition recovers within minutes after a spontaneous seizure. Although it is unclear whether the seizure-related changes in evoked responses are a cause or an effect of increased seizure severity in older gerbils, their analysis provides clues about developmental changes in the mechanisms of seizure spread and termination.


2013 ◽  
Vol 54 ◽  
pp. 492-498 ◽  
Author(s):  
Premysl Jiruska ◽  
Anan B.Y. Shtaya ◽  
David M.S. Bodansky ◽  
Wei-Chih Chang ◽  
William P. Gray ◽  
...  

1996 ◽  
Vol 75 (1) ◽  
pp. 124-132 ◽  
Author(s):  
E. Pan ◽  
J. L. Stringer

1. Hippocampal slices bathed in 8 mM potassium and 0-added calcium exhibited spontaneous epileptiform activity in the dentate gyrus. Extracellular recording revealed recurrent prolonged bursts of population spikes and an associated negative DC shift. These episodes were very similar to the in vivo phenomenon termed maximal dentate activation (MDA). Therefore this in vitro activity will be referred to as MDA-like activity or events. 2. During the MDA-like activity, the individual granule cells exhibited a sustained depolarization that matched the duration of the negative extracellular DC shift. At the beginning of the MDA-like activity, there was a burst of action potentials. After the burst, most granule cells either continued to fire action potentials regularly or in bursts. Some cells exhibited this initial burst of activity and then a dramatic reduction in firing rate. This reduction in rate was followed by a gradual increase in the amplitude and frequency of the epileptiform activity recorded during the remainder of the MDA-like event. 3. Before and between MDA-like events, spontaneous cellular activity consisted of single action potentials and bursts of action potentials on a depolarizing envelope. In addition, depolarizing potentials, up to 13 mV, were recorded. There were no extracellular field potentials associated with these intracellularly recorded potentials. 4. In the 8 mM potassium, 0-added calcium test solution, the membrane potential threshold for burst production was significantly lower than in normal potassium and calcium medium. 5. The effect of depolarizing and hyperpolarizing current injections on the amplitude and frequency of the epileptiform activity was tested. Current injection had no effect on the frequency of the epileptiform activity recorded during the MDA-like events. However, the frequency of the cellular bursts between MDA-like events was very sensitive to current injection. Depolarizing current increased the frequency, and hyperpolarizing current decreased the frequency of the spontaneous activity. 6. This study has shown that in 8 mM potassium and 0-added calcium the granule cells of the dentate gyrus are capable of generating spontaneous bursts that appear to be mediated by endogenous mechanisms. In addition, synchronized epileptiform discharges were recorded from the granule cells at regular intervals that appear were recorded from the granule cells at regular intervals that appear to be mediated by exogenous nonsynaptic mechanisms.


1992 ◽  
Vol 68 (6) ◽  
pp. 2016-2025 ◽  
Author(s):  
J. S. Schweitzer ◽  
P. R. Patrylo ◽  
F. E. Dudek

1. The dentate gyrus has been proposed to be a gate for entry of neuronal activity into the hippocampus. This function would give it a critical role in the propagation of seizure activity in that region. The hallmark of epileptiform activity in the dentate itself, often referred to as "maximal dentate activation" (MDA), has not been reproduced previously in vitro. 2. With the use of rat hippocampal slices, bath [Ca2+] was decreased, and [K+] was increased concurrently to simulate conditions found during intense neuronal activity in vivo. Both evoked and spontaneous field bursts were observed in the dentate granule cell layer under these conditions. These bursts were similar to MDA, consisting of a prolonged negative shift in extracellular potential with large-amplitude population spikes. 3. In 0.5 mM bath [Ca2+], single stimuli applied to the perforant path could evoke prolonged field bursts in the dentate only when bath [K+] was > or = 9 mM. However, repetitive stimulation (10 Hz) of the perforant path could elicit similar dentate responses when bath [K+] was as low as 5 mM. 4. In 0.5 mM bath [Ca2+], interictal-type bursts appeared spontaneously in CA1 and CA3 when bath [K+] was > or = 5 mM but were lost when [K+] was > 9 mM. Spontaneous seizurelike activity in the dentate required a higher minimum bath [K+] (9 mM) and persisted at [K+] of 11 mM. 5. Stimulation-evoked field bursts in the dentate altered epileptiform activity in CA3. At bath [K+] insufficient to cause spontaneous CA3 bursts, CA3 was activated transiently when prolonged field bursts occurred in the dentate. At higher bath [K+] in which spontaneous CA3 bursts did occur, they were depressed during the dentate bursts. 6. Deletion of Ca2+ from the bath; the addition of 30 microM each of bicuculline methiodide, D,L-2-amino-5-phosphonopentanoate (AP-5), and 6,7-dinitroquinoxaline-2,3-dione (DNQX); or the combination of both manipulations did not block antidromically evoked or spontaneous prolonged field bursts in the dentate. Thus the mechanisms maintaining and propagating these events did not require fast amino acid-mediated synaptic transmission. 7. The concurrent alteration of [K+] and [Ca2+] required to produce prolonged field bursts in the dentate underscores the positive feedback relationship between neuronal excitation and extracellular ionic concentrations, whereas the ability of synaptic stimulation to trigger nonsynaptic seizurelike events such as these prolonged field bursts may be relevant to the transition from interictal to ictal activity in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document