Chronic epileptic foci in vitro in hippocampal slices from rats with the tetanus toxin epileptic syndrome

1989 ◽  
Vol 62 (2) ◽  
pp. 458-468 ◽  
Author(s):  
J. G. Jefferys

1. Minute doses of tetanus toxin were injected into the hippocampi of rats, under pentobarbitone anesthesia, to induce a chronic experimental epilepsy. The effects of this treatment were studied in vitro in hippocampal slices prepared 1-60 days after injection. 2. Epileptic activity was preserved in these slices in vitro, closely resembling that seen in vivo. Epileptiform afterdischarges were evoked by stimulation after survival times of greater than or equal to 3 days from injection. Spontaneous synchronous epileptic discharges were recorded from 7 days after injection. Both kinds of epileptiform activity were found with survival times up to 36 days but not beyond 44 days. This time course resembles the waxing and waning of the epileptic syndrome in vivo. 3. Two distinct types of spontaneous burst were seen. The first was a simple burst lasting 100-300 ms, reminiscent of the "interictal spike" of the clinical electroencephalogram. The second was much more prolonged, lasting several seconds. It consisted of a simple burst followed by a series of discrete afterbursts at 3-6/s and resembled the early stages of an epileptic seizure. Both types of burst were associated with slow field potentials that were positive at the cell-body layer. 4. Both the interictal and the seizure-like spontaneous epileptic discharges originated in the CA3b/c pyramidal cell region and propagated at 0.1-0.25 m/s along the cell layer toward the CA1 region. They occurred at very variable intervals, ranging from 20 s to 30 min. 5. Spontaneous epileptic bursts occurred in media containing 3 mM [K+]o to 5 mM in one-third of experiments during the period 1-4 wk after injection. Spontaneous bursts could be induced by increasing [K+]o to 5 mM in two-thirds of the remaining slices, which initially had produced evoked afterdischarges. 6. Intracellular recordings revealed that spontaneous field bursts were invariably associated with paroxysmal depolarization shifts (PDSs) and bursts of action potentials, suggesting that almost all the pyramidal cells in the region were recruited into the epileptic discharges. In some cells, smaller abnormal depolarizations were also seen; they were clearly larger than the spontaneous synaptic potentials but were not associated with field potentials. They may have been due to a more limited recruitment of pyramidal cells into partially synchronous bursts. 7. The tetanus toxin experimental epileptic syndrome differs from chronic models described previously in retaining in the hippocampal slice in vitro much of the spontaneous epileptic activity seen in vivo in the freely moving chronically epileptic rat.(ABSTRACT TRUNCATED AT 400 WORDS)

2015 ◽  
Vol 113 (7) ◽  
pp. 2408-2419 ◽  
Author(s):  
J. Josh Lawrence ◽  
Heikki Haario ◽  
Emily F. Stone

Parvalbumin-positive basket cells (PV BCs) of the CA1 hippocampus are active participants in theta (5–12 Hz) and gamma (20–80 Hz) oscillations in vivo. When PV BCs are driven at these frequencies in vitro, inhibitory postsynaptic currents (IPSCs) in synaptically connected CA1 pyramidal cells exhibit paired-pulse depression (PPD) and multiple-pulse depression (MPD). Moreover, PV BCs express presynaptic muscarinic acetylcholine receptors (mAChRs) that may be activated by synaptically released acetylcholine during learning behaviors in vivo. Using acute hippocampal slices from the CA1 hippocampus of juvenile PV-GFP mice, we performed whole cell recordings from synaptically connected PV BC-CA1 pyramidal cell pairs to investigate how bath application of 10 μM muscarine impacts PPD and MPD at CA1 PV BC-pyramidal cell synapses. In accordance with previous studies, PPD and MPD magnitude increased with stimulation frequency. mAChR activation reduced IPSC amplitude and transiently reduced PPD, but MPD was largely maintained. Consistent with a reduction in release probability ( pr), MPD and mAChR activation increased both the coefficient of variation of IPSC amplitudes and the fraction of failures. Using variance-mean analysis, we converted MPD trains to pr functions and developed a kinetic model that optimally fit six distinct pr conditions. The model revealed that vesicular depletion caused MPD and that recovery from depression was dependent on calcium. mAChR activation reduced the presynaptic calcium transient fourfold and initial pr twofold, thereby reducing PPD. However, mAChR activation slowed calcium-dependent recovery from depression during sustained repetitive activity, thereby preserving MPD. Thus the activation of presynaptic mAChRs optimally protects PV BCs from vesicular depletion during short bursts of high-frequency activity.


1994 ◽  
Vol 71 (4) ◽  
pp. 1591-1596 ◽  
Author(s):  
M. E. Rice ◽  
M. A. Perez-Pinzon ◽  
E. J. Lee

1. We have determined the ascorbic acid (ascorbate) and glutathione (GSH) content of cortical and hippocampal slices from rat brain after prolonged (6h) incubation and have correlated these levels with the histological quality of the slices. Ascorbate and GSH levels in control and sliced tissue were determined by high performance liquid chromatography (HPLC) with electrochemical detection. Cell morphology of incubated slices was compared with that of intact tissue in cresyl violet stained tissue sections. 2. Roughly 70% of tissue ascorbate and GSH was lost from slices during incubation in vitro. Normal in vivo levels of ascorbate (2-3 mumol g-1 tissue wet weight) could be maintained by including 200-400 microM ascorbate (typical extracellular concentration) in the incubation media. By contrast, the loss of GSH could not be prevented by incubation with GSH. 3. The morphology of cells in hippocampal slices incubated under conditions that maintained ascorbate content and compartmentalization were similar to those of intact tissue. Ascorbate protected pyramidal cells in CA1 and CA3 regions of the hippocampus from the degeneration that was seen in slices incubated in ascorbate-free media. 4. These data suggest that loss of endogenous antioxidants may be a major factor in neuronal loss in vitro and support the notion that ascorbate is an endogenous neuroprotective agent.


2001 ◽  
Vol 86 (6) ◽  
pp. 2748-2753 ◽  
Author(s):  
G. T. Finnerty ◽  
M. A. Whittington ◽  
J.G.R. Jefferys

The dentate gyrus is thought to be a key area in containing the spread of seizure discharges in temporal lobe epilepsy. We investigated whether it actively contributes to the transition to seizure in vivo using the tetanus toxin chronic experimental epilepsy. Brief epileptic discharges lasted <2 s in freely moving animals and were clearly distinguishable from spontaneous seizures that lasted tens of seconds. This suggested that the changes underpinning the transition to seizure started within the first few seconds of seizure onset. During this period, we found that the amplitude of dentate gyrus population spikes depressed initially, but from 1.1 s after seizure onset, they potentiated. The amplitude and number of CA3 population spikes paralleled the pattern found in the dentate gyrus. We used hippocampal slices to study dentate filtering in more detail. The perforant pathway was stimulated repetitively at the frequency of field postsynaptic potentials found during epileptic discharges in vivo. The amplitude of dentate gyrus population spikes decreased to a steady state in naı̈ve hippocampal slices. In hippocampal slices prepared from rats previously injected with tetanus toxin, population spike amplitude decreased transiently and then potentiated. We found that the biphasic profile and rate of potentiation of dentate population spikes in vivo can be reproduced in naı̈ve hippocampal slices by blocking GABAB receptors. We conclude that the filtering properties of the dentate gyrus are altered in the tetanus toxin model of epilepsy and propose how this contributes to the transition to seizure in our animals.


2007 ◽  
Vol 98 (4) ◽  
pp. 2324-2336 ◽  
Author(s):  
Adriano Augusto Cattani ◽  
Valérie Delphine Bonfardin ◽  
Alfonso Represa ◽  
Yehezkel Ben-Ari ◽  
Laurent Aniksztejn

Cell-surface glutamate transporters are essential for the proper function of early cortical networks because their dysfunction induces seizures in the newborn rat in vivo. We have now analyzed the consequences of their inhibition by dl-TBOA on the activity of the developing CA1 rat hippocampal network in vitro. dl-TBOA generated a pattern of recurrent depolarization with an onset and decay of several seconds' duration in interneurons and pyramidal cells. These slow network oscillations (SNOs) were mostly mediated by γ-aminobutyric acid (GABA) in pyramidal cells and by GABA and N-methyl-d-aspartate (NMDA) receptors in interneurons. However, in both cell types SNOs were blocked by NMDA receptor antagonists, suggesting that their generation requires a glutamatergic drive. Moreover, in interneurons, SNOs were still generated after the blockade of NMDA-mediated synaptic currents with MK-801, suggesting that SNOs are expressed by the activation of extrasynaptic NMDA receptors. Long-lasting bath application of glutamate or NMDA failed to induce SNOs, indicating that they are generated by periodic but not sustained activation of NMDA receptors. In addition, SNOs were observed in interneurons recorded in slices with or without the strata pyramidale and oriens, suggesting that the glutamatergic drive may originate from the radiatum and pyramidale strata. We propose that in the absence of an efficient transport of glutamate, the transmitter diffuses in the extracellular space to activate extrasynaptic NMDA receptors preferentially present on interneurons that in turn activate other interneurons and pyramidal cells. This periodic neuronal coactivation may contribute to the generation of seizures when glutamate transport dysfunction is present.


1997 ◽  
Vol 78 (3) ◽  
pp. 1735-1739 ◽  
Author(s):  
Denis Paré ◽  
Elen Lebel ◽  
Eric J. Lang

Paré, Denis, Elen LeBel, and Eric J. Lang. Differential impact of miniature synaptic potentials on the somata and dendrites of pyramidal neurons in vivo. J. Neurophysiol. 78: 1735–1739, 1997. We studied the impact of transmitter release resistant to tetrodotoxin (TTX) in morphologically identified neocortical pyramidal neurons recorded intracellularly in barbiturate-anesthetized cats. It was observed that TTX-resistant release occurs in pyramidal neurons in vivo and at much higher frequencies than was previously reported in vitro. Further, in agreement with previous findings indicating that GABAergic and glutamatergic synapses are differentially distributed in the somata and dendrites of pyramidal cells, we found that most miniature synaptic potentials were sensitive to γ-aminobutyric acid-A (GABAA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists in presumed somatic and dendritic impalements, respectively. Pharmacological blockage of spontaneous synaptic events produced large increases in input resistance that were more important in dendritic (≈50%) than somatic (≈10%) impalements. These findings imply that in the intact brain, pyramidal neurons are submitted to an intense spike-independent synaptic bombardment that decreases the space constant of the cells. These results should be taken into account when extrapolating in vitro findings to intact brains.


1996 ◽  
Vol 76 (5) ◽  
pp. 2986-3001 ◽  
Author(s):  
H. E. Scharfman

1. Injection of aminooxyacetic acid (AOAA) into the entorhinal cortex in vivo produces acute seizures and cell loss in medial entorhinal cortex. To understand these effects, AOAA was applied directly to the medial entorhinal cortex in slices containing both the entorhinal cortex and hippocampus. Extracellular and intracellular recordings were made in both the entorhinal cortex and hippocampus to study responses to angular bundle stimulation and spontaneous activity. 2. AOAA was applied focally by leak from a micropipette or by pressure ejection. Evoked potentials increased gradually within 5 min of application, particularly the late, negative components. Evoked potentials continued to increase for up to 1 h, and these changes persisted for the remainder of the experiment (up to 5 h after drug application). 3. Paired pulse facilitation (100-ms interval) was also enhanced after AOAA application. Increasing stimulus frequency to 1-10 Hz increased evoked potentials further, and after several seconds of such stimulation multiple field potentials occurred. When stimulation was stopped at this point, repetitive field potentials occurred spontaneously for 1-2 min. These recordings, and simultaneous extracellular recordings in different layers, indicated that spontaneous synchronous activity occurred in entorhinal neurons. Intracellularly labeled cortical pyramidal cells depolarized and discharged during spontaneous and evoked field potentials. 4. The effects of AOAA were blocked reversibly by bath application of the N-methyl-D-aspartate (NMDA) receptor antagonist D-amino-5-phosphonovalerate (D-APV; 25 microM) or focal application of D-APV to the medial entorhinal cortex. 5. Simultaneous extracellular recordings from the entorhinal cortex and hippocampus demonstrated that spontaneous synchronous activity in layer III was often followed within several milliseconds by negative field potentials in the terminal zones of the perforant path (stratum moleculare of the dentate gyrus and stratum lacunosum-moleculare of area CA1). The extracellular potentials recorded in the dentate gyrus corresponded to excitatory postsynaptic potentials and action potentials in dentate granule cells. However, extracellular potentials in area CA1 were small and rarely correlated with discharge in CA1 pyramidal cells. 6. The results demonstrate that AOAA application leads to an NMDA-receptor-dependent enhancement of evoked potentials in medial entorhinal cortical neurons, which appears to be irreversible. The potentials can be facilitated by repetitive stimulation, and lead to synchronized discharges of entorhinal neurons. The discharges invade other areas such as the hippocampus, indicating how seizure activity may spread after AOAA injection in vivo. These data suggest that AOAA may be a useful tool to study longlasting changes in NMDA receptor function that lead to epileptiform activity and neurodegeneration.


Author(s):  
Sha Sumei ◽  
Kong Xiangyun ◽  
Chen Fenrong ◽  
Sun Xueguang ◽  
Hu Sijun ◽  
...  

Background/AimsThe role of DHRS3 in human cancer remains unclear. Our study explored the role of DHRS3 in gastric cancer (GC) and its clinicopathological significance and associated mechanisms.MaterialsBisulfite-assisted genomic sequencing PCR and a Mass-Array system were used to evaluate and quantify the methylation levels of the promoter. The expression levels and biological function of DHRS3 was examined by both in vitro and in vivo assays. A two-way hierarchical cluster analysis was used to classify the methylation profiles, and the correlation between the methylation status of the DHRS3 promoter and the clinicopathological characteristics of GC were then assessed.ResultsThe DHRS3 promoter was hypermethylated in GC samples, while the mRNA and protein levels of DHRS3 were significantly downregulated. Ectopic expression of DHRS3 in GC cells inhibited cell proliferation and migration in vitro, decreased tumor growth in vivo. DHRS3 methylation was correlated with histological type and poor differentiation of tumors. GC patients with high degrees of CpG 9.10 methylation had shorter survival times than those with lower methylation.ConclusionDHRS3 was hypermethylated and downregulated in GC patients. Reduced expression of DHRS3 is implicated in gastric carcinogenesis, which suggests DHRS3 is a tumor suppressor.


1986 ◽  
Vol 55 (6) ◽  
pp. 1268-1282 ◽  
Author(s):  
B. Lancaster ◽  
P. R. Adams

A single-electrode voltage-clamp technique was employed on in vitro hippocampal slices to examine the membrane current responsible for the slow afterhyperpolarization (AHP) in CA1 pyramidal cells. This was achieved by using conventional procedures to evoke an AHP in current clamp, followed rapidly by a switch into voltage clamp (hybrid clamp). The AHP current showed a dependence on extracellular K+, which was close to that predicted for a K+ current by the Nernst equation. The AHP current could be blocked by Cd2+ or norepinephrine. Although the AHP current showed a requirement for voltage-dependent Ca2+ entry, the current did not show any clear intrinsic voltage dependence. Once activated, AHP current is not turned off by hyperpolarizing the membrane potential. The effects of norepinephrine, Cd2+, and tetraethylammonium (TEA) were used to identify an AHP current component to the outward current evoked by depolarizing voltage commands from holding potentials that approximate to the resting potential for these cells. The AHP current can contribute significantly to the outward current during the depolarizing command. Upon repolarization it is evident as a slow outward tail current. This slow tail current had the same time constant as AHP currents evoked by hybrid clamp. Fast components to the tail currents were also observed. These were sensitive to Cd2+ and TEA. They probably represent a voltage-sensitive gKCa, sometimes termed C-current. The strong sensitivity to voltage and TEA displayed by the conventionally described gKCa (IC) are properties inconsistent with the AHP. It seems likely that the AHP current (IAHP) represents a Ca2+-activated K+ current separate from IC and that these two currents coexist in the same cell.


1977 ◽  
Author(s):  
Christine N. Vogel ◽  
Kingdon S. Henry ◽  
Roger L. Lundblad

Our intention is to study the interaction of rabbit thrombin with antithrombin III (AT-III) in vitro and in vivo. After activation of crude prothrombin with tissue thromboplastin and CaCl2, thrombin was purified and showed two species of thrombin with molecular weights of 36,000 and 39,000 daltons as determined by sodium dodecyl sulfate discontinuous gel electrophoresis. Rabbit AT-III was purified using a heparin agarose column and had a molecular weight of 55,000 daltons. The inhibition of thrombin by AT-III was followed by fibrinogen clotting assays and an AT-III-thrombin complex was observed on gel electrophoresis. For the in vivo studies both thrombin and AT-III were radiolabelled with Na125i using the solid state lactoperoxidase method and retained 99% of the pre-iodinated specific activity. Radiolabelled thrombin and a radiolabelled AT-III-thrombin complex were injected into different rabbits. The rate of removal of both was very similar with a half-life of approximately 9 hours. When radiolabelled AT-III was injected, the half-life was approximately 60 hours. Since the disappearance rate of thrombin more closely approximates that of the preformed AT-III-thrombin complex and is clearly shorter than the turnover rate of AT-III, the possibility is raised that thrombin combines in vivo with a native inhibitor such as AT-III and may in fact be removed from the circulation as a complex rather than as a native molecule.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jun Noguchi ◽  
Akira Nagaoka ◽  
Tatsuya Hayama ◽  
Hasan Ucar ◽  
Sho Yagishita ◽  
...  

Abstract Most excitatory synapses in the brain form on dendritic spines. Two-photon uncaging of glutamate is widely utilized to characterize the structural plasticity of dendritic spines in brain slice preparations in vitro. In the present study, glutamate uncaging was used to investigate spine plasticity, for the first time, in vivo. A caged glutamate compound was applied to the surface of the mouse visual cortex in vivo, revealing the successful induction of spine enlargement by repetitive two-photon uncaging in a magnesium free solution. Notably, this induction occurred in a smaller fraction of spines in the neocortex in vivo (22%) than in hippocampal slices (95%). Once induced, the time course and mean long-term enlargement amplitudes were similar to those found in hippocampal slices. However, low-frequency (1–2 Hz) glutamate uncaging in the presence of magnesium caused spine shrinkage in a similar fraction (35%) of spines as in hippocampal slices, though spread to neighboring spines occurred less frequently than it did in hippocampal slices. Thus, the structural plasticity may occur similarly in the neocortex in vivo as in hippocampal slices, although it happened less frequently in our experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document