Discharge Characteristics of Neurons in the Red Nucleus During Voluntary Gait Modifications: A Comparison with the Motor Cortex

2002 ◽  
Vol 88 (4) ◽  
pp. 1791-1814 ◽  
Author(s):  
Sylvain Lavoie ◽  
Trevor Drew

We have examined the contribution of the red nucleus to the control of locomotion in the cat. Neuronal activity was recorded from 157 rubral neurons, including identified rubrospinal neurons, in three cats trained to walk on a treadmill and to step over obstacles attached to the moving belt. Of 72 neurons with a receptive field confined to the contralateral forelimb, 66 were phasically active during unobstructed locomotion. The maximal activity of the majority of neurons (59/66) was centered around the swing phase of locomotion. Slightly more than half of the neurons (36/66) were phasically activity during both swing and stance. In addition, some rubral neurons (14/66) showed multiple periods of phasic activity within the swing phase of the locomotor cycle. Periods of phasic discharge temporally coincident with the swing phase of the ipsilateral limb were observed in 7/66 neurons. During voluntary gait modifications, most forelimb-related neurons (70/72) showed a significant increase in their discharge activity when the contralateral limb was the first to step over the obstacle (lead condition). Maximal activity in nearly all cells (63/70) was observed during the swing phase, and 23/63 rubral neurons exhibited multiple increases of activity during the modified swing phase. A number of cells (18/70) showed multiple periods of increased activity during swing and stance. Many of the neurons (35/63, 56%) showed an increase in activity at the end of the swing phase; this period of activity was temporally coincident with the period of activity in wrist dorsiflexors, such as the extensor digitorum communis. A smaller proportion of neurons with receptive fields restricted to the hindlimbs showed similar characteristics to those observed in the population of forelimb-related neurons. The overall characteristics of these rubral neurons are similar to those that we obtained previously from pyramidal tract neurons recorded from the motor cortex during an identical task. However, in contrast to the results obtained in the rubral neurons, most motor cortical neurons showed only one period of increased activity during the step cycle. We suggest that both structures contribute to the modifications of the pattern of EMG activity that are required to produce the change in limb trajectory needed to step over an obstacle. However, the results suggest an additional role for the red nucleus in regulating intra- and interlimb coordination.

1994 ◽  
Vol 72 (5) ◽  
pp. 2070-2089 ◽  
Author(s):  
W. Widajewicz ◽  
B. Kably ◽  
T. Drew

1. To determine whether the motor cortex is involved in the modification of the hindlimb trajectory during voluntary adjustments of the locomotor cycle, we recorded the discharge patterns of 72 identified pyramidal tract neurons (PTNs) within the hindlimb region of pericruciate area 4 during a task in which cats stepped over obstacles attached to a moving treadmill belt. Data were also recorded from representative flexor and extensor muscles of the fore- and hindlimbs contralateral to the recording site. 2. To step over the obstacles, the cats increased flexion sequentially at the knee, ankle, and then the hip to bring the leg above and over the obstacle. This flexion movement was followed by a strong extension of the whole limb that repositioned the foot on the treadmill belt. These changes in limb trajectory were associated with large changes in the level of the activity of many flexor and extensor muscles of the hindlimb, and especially of the knee flexor, semitendinosus. On the basis of the time of onset of the knee and ankle extensor muscles in those steps when the limb was the first to be brought over the obstacle, the swing phase of the modified step cycle was subdivided into two parts, Phase I and Phase II, which correspond respectively to the flexion of the limb (F) and the initial extension (E1). 3. The temporal sequence of the movement was the same whether the hindlimb was the first (lead) or second (trail) to step over the obstacle, although the relative time between flexion at the three joints was changed in the two conditions. 4. Seventy-two PTNs were recorded from the posterior bank of the cruciate sulcus during the voluntary gait modifications. Sixty-three (63/72) of these PTNs had receptive fields that were confined to the contralateral hindlimb, or were recorded from penetrations in which such cells were found. Nine (9/72) PTNs had receptive fields on both the contralateral fore- and hindlimbs. Microstimulation applied through the recording electrode evoked, in all cases, brief twitch responses only in contralateral hindlimb musculature. 5. Forty-two (42/63) of those PTNs with receptive fields confined to the hindlimb showed a significant increase in their discharge frequency when the limb contralateral to the recording site was the first to step over the obstacle (lead limb). Twenty-nine PTNs (29/63) discharged maximally during the swing phase (18 in Phase I and 11 in Phase II), including two PTNS that also increased their discharge frequency during stance.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (5) ◽  
pp. 2297-2315 ◽  
Author(s):  
Marie-Josée Rho ◽  
Sylvain Lavoie ◽  
Trevor Drew

Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. To determine the extent to which the rubrospinal tract is capable of modifying locomotion in the intact cat, we applied microstimulation (cathodal current, 330 Hz; pulse duration 0.2 ms; maximal current, 25 μA) to the red nucleus during locomotion. The stimuli were applied either as short trains (33 ms) of impulses to determine the capacity of the rubrospinal tract to modify the level of electromyographic (EMG) activity in different flexors and extensors at different phases of the step cycle or as long trains (200 ms) of pulses to determine the effect of the red nucleus on cycle timing. Stimuli were also applied with the cat at rest (33-ms train). This latter stimulation evoked short-latency (average = 11.8–19.0 ms) facilitatory responses in all of the physiological flexor muscles of the forelimb that were recorded; facilitatory responses were also common in the elbow extensor, lateral head of triceps but were rare in the physiological wrist and digit extensor, palmaris longus. Responses were still evoked in most muscles when the current was decreased to near threshold (3–10 μA). Stimulation during locomotion with the short trains of stimuli evoked shorter-latency (average = 6.0–12.5 ms) facilitatory responses in flexor muscles during the swing phase of locomotion and, except in the case of the extensor digitorum communis, evoked substantially smaller responses in stance. The same stimuli also evoked facilitatory responses in the extensor muscles during swing and produced more complex effects involving both facilitation and suppression in stance. Increasing the duration of the train to 200 ms modified the amplitude and duration of the EMG activity of both flexors and extensors but had little significant effect on the cycle duration. In contrast, whereas stimulation of the motor cortex with short trains of stimuli during locomotion had very similar effects to that of the red nucleus, increasing the train duration to 200 ms frequently produced a marked reset of the step cycle by curtailing stance and initiating a new period of swing. The results suggest that whereas both the motor cortex and the red nucleus have access to the interneuronal circuits responsible for controlling the structure of the EMG activity in the step cycle, only the motor cortex has access to the circuits responsible for controlling cycle timing.


2012 ◽  
Vol 107 (7) ◽  
pp. 1890-1903 ◽  
Author(s):  
Erik E. Stout ◽  
Irina N. Beloozerova

During locomotion, motor cortical neurons projecting to the pyramidal tract (PTNs) discharge in close relation to strides. How their discharges vary based on the part of the body they influence is not well understood. We addressed this question with regard to joints of the forelimb in the cat. During simple and ladder locomotion, we compared the activity of four groups of PTNs with somatosensory receptive fields involving different forelimb joints: 1) 45 PTNs receptive to movements of shoulder, 2) 30 PTNs receptive to movements of elbow, 3) 40 PTNs receptive to movements of wrist, and 4) 30 nonresponsive PTNs. In the motor cortex, a relationship exists between the location of the source of afferent input and the target for motor output. On the basis of this relationship, we inferred the forelimb joint that a PTN influences from its somatosensory receptive field. We found that different PTNs tended to discharge differently during locomotion. During simple locomotion shoulder-related PTNs were most active during late stance/early swing, and upon transition from simple to ladder locomotion they often increased activity and stride-related modulation while reducing discharge duration. Elbow-related PTNs were most active during late swing/early stance and typically did not change activity, modulation, or discharge duration on the ladder. Wrist-related PTNs were most active during swing and upon transition to the ladder often decreased activity and increased modulation while reducing discharge duration. These data suggest that during locomotion the motor cortex uses distinct mechanisms to control the shoulder, elbow, and wrist.


Author(s):  
M. Smith Allan ◽  
Dugas Clause ◽  
Fortier Pierre ◽  
Kalasha John ◽  
Picard Nathalie

ABSTRACT:The activity of single cells in the cerebellar and motor cortex of awake monkeys was recorded during separate studies of whole-arm reaching movements and during the application of force-pulse perturbations to handheld objects. Two general observations about the contribution of the cerebellum to the control of movement emerge from the data. The first, derived from the study of whole arm reaching, suggests that although both the motor cortex and cerebellum generate a signal related to movement direction, the cerebellar signal is less precise and varies from trial to trial even when the movement kinematics remain unchanged. The second observation, derived from the study of predictable perturbations of a hand-held object, indicates that cerebellar cortical neurons better reflect preparatory motor strategies formed from the anticipation of cutaneous and proprioceptive stimuli acquired by previous experience. In spite of strong relations to grip force and receptive fields stimulated by preparatory grip forces increase, the neurons of the percentral motor cortex showed very little anticipatory activity compared with either the premotor areas or the cerebellum.


1993 ◽  
Vol 70 (1) ◽  
pp. 179-199 ◽  
Author(s):  
T. Drew

1. The discharge patterns of 91 identified pyramidal tract neurons (PTNs), located within the forelimb region of area 4 of the cat motor cortex, were recorded during the voluntary modifications of gait needed to step over obstacles attached to a moving treadmill belt. Recordings were made simultaneously from flexor and extensor muscles acting around the shoulder, elbow, wrist, and digits of the forelimb contralateral to the recording site. 2. Analysis of the changes in electromyographic (EMG) activity during the gait modification showed increases in the activity of most flexor muscles of the shoulder and elbow, as well as in the wrist and digit dorsiflexors, when the contralateral forelimb was the first to pass over the obstacle. This period of augmented activity could be subdivided into two parts: one associated with the initial flexion of the limb that was needed to bring it above and over the obstacle (phase I), and the second associated with increased wrist dorsiflexor muscle activity before foot contact (phase II). 3. The discharge frequency of a total of 57/91 (63%) of the recorded PTNs was significantly increased during the gait modification when the limb contralateral to the recording site was the first to step over the obstacle; six of these neurons also showed a significant decrease in their discharge in a different part of the step cycle. In a further 21/91 (23%) neurons, discharge frequency was only decreased, whereas the remaining 13/91 (14%) PTNs showed similar patterns of activity both during control walking and during the gait modifications. 4. Most of those neurons (47/57) in which significant increases in firing frequency were observed, discharged maximally during the period of increased activity of the physiological flexor muscles. Twenty-three of these cells (23/47) discharged maximally in phase I, and 12 (12/47) in phase II. A third population of PTNS (12/47) started to increase their discharge in the stance phase of the step cycle immediately preceding the modified cycle. Seven (7/57) PTNs increased their discharge during the stance phase of the modified cycle, and the remaining three could not be classified as being preferentially related to any one part of the step cycle. 5. The frequency modulation of 41/57 PTNs was less when the leg contralateral to the recording site was the second to encounter the obstacle. In many neurons there was also an appreciable change in the time in the step cycle that peak discharge occurred. These changes in amplitude and timing paralleled the changes observed in the temporal relationships of the muscles.(ABSTRACT TRUNCATED AT 400 WORDS)


2005 ◽  
Vol 94 (2) ◽  
pp. 1133-1142 ◽  
Author(s):  
Roth-Visal Ung ◽  
Marie-Andrée Imbeault ◽  
Christian Ethier ◽  
Laurent Brizzi ◽  
Charles Capaday

When untrained subjects walk backward on a treadmill, an unexpectedly large amplitude soleus H-reflex occurs in the midswing phase of backward walking. We hypothesized that activity in the corticospinal tract (CST) during midswing depolarizes the soleus α-motoneurons subliminally and thus brings them closer to threshold. To test this hypothesis, transcranial magnetic stimulation (TMS) was applied to the leg area of the motor cortex (MCx) during backward walking. Motor-evoked potentials (MEPs) were recorded from the soleus and tibialis anterior (TA) muscles in untrained subjects at different phases of the backward walking cycle. We reasoned that if soleus MEPs could be elicited in midswing, while the soleus is inactive, this would be strong evidence for increased postsynaptic excitability of the α-motoneurons. In the event, we found that in untrained subjects, despite the presence of an unexpectedly large H-reflex in midswing, no soleus MEPs were observed at that time. The soleus MEPs were in phase with the soleus electromyographic (EMG) activity during backward walking. Soleus MEPs increased more rapidly as a function of the EMG activity during voluntary activity than during backward walking. Furthermore, a conditioning stimulus to the motor cortex facilitated the soleus H-reflex at rest and during voluntary plantarflexion but not in the midswing phase of backward walking. With daily training at walking backward, the time at which the H-reflex began to increase was progressively delayed until it coincided with the onset of soleus EMG activity, and its amplitude was considerably reduced compared with its value on the first experimental day. By contrast, no changes were observed in the timing or amplitude of soleus MEPs with training. Taken together, these observations make it unlikely that the motor cortex via the CST is involved in control of the H-reflex during the backward step cycle of untrained subjects nor in its progressive adaptation with training. Our observations raise the possibility that the large amplitude of H-reflex in untrained subjects and its adaptation with training are mainly due to control of presynaptic inhibition of Ia-afferents by other descending tracts.


2004 ◽  
Vol 92 (5) ◽  
pp. 2968-2984 ◽  
Author(s):  
Michael C. Park ◽  
Abderraouf Belhaj-Saïf ◽  
Paul D. Cheney

Stimulus-triggered averaging (StTA) of electromyographic (EMG) activity from 24 simultaneously recorded forelimb muscles was used to investigate properties of primary motor cortex (M1) output in the macaque monkey. Two monkeys were trained to perform a reach-to-grasp task requiring multijoint coordination of the forelimb. EMG activity was recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (15 μA at 15 Hz) was delivered throughout the movement task. From 297 stimulation sites in M1, a total of 2,079 poststimulus effects (PStE) were obtained including 1,398 poststimulus facilitation (PStF) effects and 681 poststimulus suppression (PStS) effects. Of the PStF effects, 60% were in distal and 40% in proximal muscles; 43% were of extensors and 47% flexors. For PStS, the corresponding numbers were 55 and 45% and 36 and 55%, respectively. M1 output effects showed extensive cofacilitation of proximal and distal muscles (96 sites, 42%) including 47 sites that facilitated at least one shoulder, elbow, and distal muscle, 45 sites that facilitated an elbow muscle and a distal muscle, and 22 sites that facilitated at least one muscle at all joints. The muscle synergies represented by outputs from these sites may serve an important role in the production of coordinated, multijoint movements. M1 output effects showed many similarities with red nucleus output although red nucleus effects were generally weaker and showed a strong bias toward facilitation of extensor muscles and a greater tendency to facilitate synergies involving muscles at noncontiguous joints.


1998 ◽  
Vol 80 (1) ◽  
pp. 406-424 ◽  
Author(s):  
Bouchra Kably ◽  
Trevor Drew

Kably, Bouchra and Trevor Drew. Corticoreticular pathways in the cat. II. Discharge activity of neurons in area 4 during voluntary gait modifications. J. Neurophysiol. 80: 406–424, 1998. We propose that the descending command from area 4 that is responsible, in part, for the change in limb trajectory required to step over an obstacle in one's path also plays a role in triggering the anticipatory postural modifications that accompany this movement. To test this hypothesis, we recorded the discharge characteristics of identified classes of corticofugal neurons in area 4 of the cat. Neurons were identified either as: pryamidal tract neurons (PTNs) if their axon projected to the caudal pyramidal tract (PT) but not to the pontomedullary reticular formation (PMRF); as corticoreticular neurons (CRNs) if their axon projected to the PMRF but not to the PT; and as PTN/CRNs if their axon projected to both structures. Altogether, the discharge properties of 212 corticofugal neurons (109 PTNs, 66 PTN/CRNs, and 37 CRNs) within area 4 were recorded during voluntary gait modifications. Neurons in all three classes showed increases in their discharge frequency during locomotion and included groups that increased their discharge either during the swing phase of the modified step, during the subsequent stance phase, or in the stance phase of the cycle preceding the step over the obstacle. A slightly higher percentage of CRNs (39%) discharged in the stance phase prior to the gait modification than did the PTNs or PTN/CRNs (20% and 17% respectively). In 37 electrode penetrations, we were able to record clusters of 3 or more neurons within 500 μm of each other. In most cases, PTN/CRNs recorded in close proximity to PTNs had similar receptive fields and discharged in a similar, but not identical, manner during the gait modifications. Compared with adjacent PTNs, CRNs normally showed a more variable pattern of activity and frequently discharged earlier in the step cycle than did the PTNs or PTN/CRNs. We interpret the results as providing support for the original hypothesis. We suggest that the collateral branches to the PMRF from corticofugal neurons with axons that continue at least as far as the caudal PT provide a signal that could be used to trigger dynamic postural responses that are appropriately organized and scaled for the movements that are being undertaken. We suggest that the more variable and earlier discharge activity observed in CRNs might be used to modify the postural support on which the movements and the dynamic postural adjustments are superimposed.


1982 ◽  
Vol 48 (4) ◽  
pp. 1048-1057 ◽  
Author(s):  
H. Asanuma ◽  
R. S. Waters ◽  
H. Yumiya

1. The corticocortical projection from area 3a to area 4 gamma was restudied using tranquilized cats. 2. Intracortical microstimulation (ICMS) of a given locus in area 3a produced effects on neurons in area 4 gamma that were located in a small area extending along the direction of the radial fibers constituting a columnar shape. 3. Cortical neurons in area 3a that projected to a particular neuron in area 4 gamma were located in a region that extended along the direction of the radial fibers and constituted a columnar shape. 4. Two-thirds of the projection neurons in area 3a had different receptive fields from those of neurons in the projected area in 4 gamma, thus suggesting that the 3a neurons are not simply transferring peripheral information to the 4 gamma neurons. 5. ICMS delivered to area 3a rarely excited 4 gamma neurons but rather facilitated their evoked discharges. 6. It is suggested that the activity of corticocortical projection from area 3a to 4 gamma can influence the activity of 4 gamma neurons only when combined with other inputs to the motor cortex.


1987 ◽  
Vol 57 (2) ◽  
pp. 554-562 ◽  
Author(s):  
J. A. Hoffer ◽  
G. E. Loeb ◽  
N. Sugano ◽  
W. B. Marks ◽  
M. J. O'Donovan ◽  
...  

Cat sartorius has two distinct anatomical portions, anterior (SA-a) and medial (SA-m). SA-a acts to extend the knee and also to flex the hip. SA-m acts to flex both the knee and the hip. The objective of this study was to investigate how a "single motoneuron pool" is used to control at least three separate functions mediated by the two anatomical portions of one muscle. Discharge patterns of single motoneurons projecting to the sartorius muscle were recorded using floating microelectrodes implanted in the L5 ventral root of cats. The electromyographic activity generated by the anterior and medial portions of sartorius was recorded with chronically implanted electrodes. The muscle portion innervated by each motoneuron was determined by spike-triggered averaging of the EMGs during walking on a motorized treadmill. During normal locomotion, SA-a exhibited two bursts of EMG activity per step cycle, one during the stance phase and one during the late swing phase. In contrast, every recorded motoneuron projecting to SA-a discharged a single burst of action potentials per step cycle. Some SA-a motoneurons discharged only during the stance phase, whereas other motoneurons discharged only during the late swing phase. In all cases, the instantaneous frequencygram of the motoneuron was well fit by the rectified smoothed EMG envelope generated by SA-a during the appropriate phase of the step cycle. During normal locomotion, SA-m exhibited a single burst of EMG activity per step cycle, during the swing phase. The temporal characteristics of the EMG bursts recorded from SA-m differed from the swing-phase EMG bursts generated by SA-a.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document