Cat hindlimb motoneurons during locomotion. III. Functional segregation in sartorius

1987 ◽  
Vol 57 (2) ◽  
pp. 554-562 ◽  
Author(s):  
J. A. Hoffer ◽  
G. E. Loeb ◽  
N. Sugano ◽  
W. B. Marks ◽  
M. J. O'Donovan ◽  
...  

Cat sartorius has two distinct anatomical portions, anterior (SA-a) and medial (SA-m). SA-a acts to extend the knee and also to flex the hip. SA-m acts to flex both the knee and the hip. The objective of this study was to investigate how a "single motoneuron pool" is used to control at least three separate functions mediated by the two anatomical portions of one muscle. Discharge patterns of single motoneurons projecting to the sartorius muscle were recorded using floating microelectrodes implanted in the L5 ventral root of cats. The electromyographic activity generated by the anterior and medial portions of sartorius was recorded with chronically implanted electrodes. The muscle portion innervated by each motoneuron was determined by spike-triggered averaging of the EMGs during walking on a motorized treadmill. During normal locomotion, SA-a exhibited two bursts of EMG activity per step cycle, one during the stance phase and one during the late swing phase. In contrast, every recorded motoneuron projecting to SA-a discharged a single burst of action potentials per step cycle. Some SA-a motoneurons discharged only during the stance phase, whereas other motoneurons discharged only during the late swing phase. In all cases, the instantaneous frequencygram of the motoneuron was well fit by the rectified smoothed EMG envelope generated by SA-a during the appropriate phase of the step cycle. During normal locomotion, SA-m exhibited a single burst of EMG activity per step cycle, during the swing phase. The temporal characteristics of the EMG bursts recorded from SA-m differed from the swing-phase EMG bursts generated by SA-a.(ABSTRACT TRUNCATED AT 250 WORDS)

1985 ◽  
Vol 54 (3) ◽  
pp. 565-577 ◽  
Author(s):  
G. E. Loeb ◽  
J. A. Hoffer

Chronically implanted electrodes and nerve cuff catheters were used to record the activity of individual muscle spindle afferents during treadmill walking as low doses of lidocaine were infused around the femoral nerve to progressively block gamma motoneuron activity. Both primary and secondary endings from both the monarticular knee extensors and the biarticular hip/knee muscles of the anterior thigh showed large decreases in afferent activity, usually well before changes in the electromyographic activity, force output, or length and velocity were seen in the parent muscles. This decline in the proprioceptive signal feeding back onto the spinal cord, which we presume to have involved most of the spindles supplied by the femoral nerve, did not cause noticeable irregularities or instability of the walking gait. At the peak of the fusimotor blockade, spindle afferents from knee extensor muscles lost about half of their usually brisk activity during the near-isometric contraction of the stance phase. Significant decreases in the response to passive stretch during the flexion phase also occurred. At the peak of the fusimotor blockade, spindle afferents from the biarticular muscles lost all of their activity during the rapidly shortening swing phase and about half of their activity during the rapidly lengthening stance phase. For both monarticular and biarticular muscle spindles, the activity decreases in stance and swing phase often occurred at distinctly different stages of the progressive fusimotor blockade, indicating several different sources of fusimotor control. From these data, we infer that the sensitivity of most spindle afferents is substantially influenced by fusimotor activity during phases of both extrafusal activity and extrafusal silence. At least some of this influence appears to come from fusimotor neurons whose recruitment is independent of the extrafusal recruitment. The extent and type of fusimotor effects on spindle afferent sensitivity (dynamic or static) appear to be specialized for the mechanical events that tend to occur during those phases.


2002 ◽  
Vol 87 (1) ◽  
pp. 286-294 ◽  
Author(s):  
P. R. Murphy

To investigate the specificity of fusimotor (γ) drive during locomotion, γ-efferents were recorded from the flexor digitorum longus (FDL) and flexor hallucis longus (FHL) nerves in a decerebrate cat preparation. These nerves innervate hindlimb muscles that differ in some aspects of their mechanical action. For both FHL and FDL two stereotyped patterns of γ activity were distinguished. Tonic units fired throughout the step cycle and had less modulation, but higher minimum rates, than phasic units, which were mainly recruited with ankle extensor [soleus (SOL)] electromyogram (EMG) activity. Differences in the relative timing of these patterns were apparent. In FHL the activity of phasic and most tonic neurons peaked after EMG onset. With FDL, tonic units generally reached maximum rate before, while phasic units peaked after, the beginning of EMG activity. During locomotion FHL and FDL α activity were rhythmically recruited with SOL. However, consistent with previous reports, FHL and FDL differed in their patterns of α activity. FHL was stereotyped while FDL was variable. Both FHL and FDL had activity related to ankle extensor EMG, but only FDL exhibited a peak around the end of this phase. No corresponding γ activity was observed in FDL. In conclusion, 1) FHL and FDL received tonic and phasic fusimotor drive; 2) there was no α/γ linkage for the late FDL α burst; 3) phasic γ-efferents in both muscles received similar inputs, linked to plantar flexor α activity; and 4) tonic γ-efferents differed, to the extent that they were modulated at all. The FHL units peaked with the plantar flexor alphas. The FDL neurons generally peaked before α activity even began.


1994 ◽  
Vol 71 (2) ◽  
pp. 603-610 ◽  
Author(s):  
M. A. Gorassini ◽  
A. Prochazka ◽  
G. W. Hiebert ◽  
M. J. Gauthier

1. In the cat step cycle the electromyographic (EMG) activity in ankle extensor muscles commences approximately 70 ms before foot contact. There is a sharp peak between 10 and 25 ms after contact and the EMG then declines for the remainder of the stance phase. It has been posited that the abrupt transition in EMG after contact is the consequence of reflexes elicited by the large barrage of afferent input that signals foot touchdown. However, it is also possible that the basic profile might be generated within the CNS, with little modification by afferent input. 2. These ideas were tested in 11 normal cats. We compared EMG responses and hindlimb kinematics in steps with normal ground support and steps in which an actuator-controlled trap door unexpectedly opened, withdrawing ground support just before foot contact. 3. In the absence of ground support the transition in EMG activity was still present. The averaged EMG pattern was similar for at least 30 ms after the foot passed through the plane of the floor. We conclude that the basic extensor activation profile in this part of the cycle is generated centrally and is not substantially altered by afferent input. 4. Between 35 and 200 ms after contact the stance phase was aborted and the foot was lifted smartly out of the hole. This reaction varied both in latency and kinematic detail, suggesting a fairly complex corrective response.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
J.F. Yang ◽  
J. Fung ◽  
M. Edamura ◽  
R. Blunt ◽  
R.B. Stein ◽  
...  

ABSTRACT:Hoffmann (H) reflexes were elicited from the soleus muscle during treadmill walking in 21 spastic paretic patients. The soleus and tibialis anterior muscles were reciprocally activated during walking in most patients, much like that observed in healthy individuals. The pattern of H-reflex modulation varied considerably between patients, from being relatively normal in some patients to a complete absence of modulation in others. The most common pattern observed was a lack of H-reflex modulation through the stance phase and slight depression of the reflex in the swing phase, considerably less modulation than that of normal subjects under comparable walking conditions. The high reflex amplitudes during periods of the step cycle such as early stance seems to be related to the stretch-induced large electromyogram bursts in the soleus in some subjects. The abnormally active reflexes appear to contribute to the clonus encountered during walking in these patients. In three patients who were able to walk for extended periods, the effect of stimulus intensity was examined. Two of these patients showed a greater degree of reflex modulation at lower stimulus intensities, suggesting that the lack of modulation observed at higher stimulus intensities is a result of saturation of the reflex loop. In six other patients, however, no reflex modulation could be demonstrated even at very low stimulus intensities.


1997 ◽  
Vol 01 (02) ◽  
pp. 95-109 ◽  
Author(s):  
W. Herzog ◽  
T. R. Leonard

The dynamic properties of the cat soleus muscle were studied in freely walking animal preparations. The force and EMG responses of the soleus following supramaximal, ins tants of the step cycle. The sensorimotor interactions of soleus with the medial head of the gastrocnemius (a functional agonist of the soleus at the ankle) and the tibialis anterior (a functional antagonist of soleus at the ankle) were studied by measuring their force and EMG responses following the artifical stimulation of the soleus nerve. Supramaximal nerve stimulation showed distinct increases in the soleus forces during the entire swing phase and the second part (after peak forces had been reached) of the stance phase. Soleus forces could only be increased slightly in the first part of stance (from paw contact to peak force). These results suggest that force production of the soleus is virtually maximal during the early phases of stance but is submaximal for the remainder of the step cycle. Forces and EMGs of the medial gastrocnemius muscle were affected by the soleus nerve stimulation only in the latter part of the swing phase. In these cases, the force and EMG of the medial gastrocnemius were reduced significantly for the step cycle following the perturbation. The active force production of soleus during late swing causes an inhibition of medial gastrocnemius activity and force. Forces and EMGs of the tibialis anterior muscle were always affected by the soleus nerve stimulation during the swing phase of the step cycle. In these case, the force EMG of the medial gastrocnemius were reduced significantly for the step cycle following the perturbation. The active force production of soleus during late swing causes an inhibition of medial gastrocnemius activity and force. Forces and EMGs of the tibialis anterior muscle were always affected by the soleus nerve stimulation during the swing phase of the step cycle. In these instances, forces and EMGs of the tibialis anterior were significantly increased compared to step cycles preceding or following the perturbation. Part of the force enhancement is caused by the stretch of the activated tibialis anterior by the soleus, and part of the enhancement is caused by reflex activation. No effects on forces or EMGs of the tibialis anterior were observed when the soleus nerve stimulation showed its effects during the stance phase of the step cycle. The results of theis study suggest that the magnitude and the quality of ensorimotor interactions of soleus with medial gastrocnemius and tibialis anterior depend on the phase of the step cycle. The strongest interactions appear to exist during the swing phase; no observable interactions were found during stance.


2001 ◽  
Vol 204 (15) ◽  
pp. 2717-2731 ◽  
Author(s):  
Gary B. Gillis ◽  
Andrew A. Biewener

SUMMARYUnderstanding how animals actually use their muscles during locomotion is an important goal in the fields of locomotor physiology and biomechanics. Active muscles in vivo can shorten, lengthen or remain isometric, and their mechanical performance depends on the relative magnitude and timing of these patterns of fascicle strain and activation. It has recently been suggested that terrestrial animals may conserve metabolic energy during locomotion by minimizing limb extensor muscle strain during stance, when the muscle is active, facilitating more economical force generation and elastic energy recovery from limb muscle–tendon units. However, whereas the ankle extensors of running turkeys and hopping wallabies have been shown to generate force with little length change (<6% strain), similar muscles in cats appear to change length more substantially while active. Because previous work has tended to focus on the mechanical behavior of ankle extensors during animal movements, the actions of more proximal limb muscles are less well understood. To explore further the hypothesis of force economy and isometric behavior of limb muscles during terrestrial locomotion, we measured patterns of electromyographic (EMG) activity and fascicle strain (using sonomicrometry) in two of the largest muscles of the rat hindlimb, the biceps femoris (a hip extensor) and vastus lateralis (a knee extensor) during walking, trotting and galloping. Our results show that the biceps and vastus exhibit largely overlapping bursts of electrical activity during the stance phase of each step cycle in all gaits. During walking and trotting, this activity typically commences shortly before the hindlimb touches the ground, but during galloping the onset of activity depends on whether the limb is trailing (first limb down) or leading (second limb down), particularly in the vastus. In the trailing limb, the timing of the onset of vastus activity is slightly earlier than that observed during walking and trotting, but in the leading limb, this activity begins much later, well after the foot makes ground contact (mean 7% of the step cycle). In both muscles, EMG activity typically ceases approximately two-thirds of the way through the stance phase. While electrically active during stance, biceps fascicles shorten, although the extent of shortening differs significantly among gaits (P<0.01). Total average fascicle shortening strain in the biceps is greater during walking (23±3%) and trotting (27±5%) than during galloping (12±5% and 19±6% in the trailing and leading limbs, respectively). In contrast, vastus fascicles typically lengthen (by 8–16%, depending on gait) over the first half of stance, when the muscle is electrically active, before shortening slightly or remaining nearly isometric over much of the second half of stance. Interestingly, in the leading limb during galloping, vastus fascicles lengthen prior to muscle activation and exhibit substantial shortening (10±2%) during the period when EMG activity is recorded. Thus, patterns of muscle activation and/or muscle strain differ among gaits, between muscles and even within the same muscle of contralateral hindlimbs (as during galloping). In contrast to the minimal strain predicted by the force economy hypothesis, our results suggest that proximal limb muscles in rats operate over substantial length ranges during stance over various speeds and gaits and exhibit complex and changing activation and strain regimes, exemplifying the variable mechanical roles that muscles can play, even during level, steady-speed locomotion.


1993 ◽  
Vol 70 (1) ◽  
pp. 179-199 ◽  
Author(s):  
T. Drew

1. The discharge patterns of 91 identified pyramidal tract neurons (PTNs), located within the forelimb region of area 4 of the cat motor cortex, were recorded during the voluntary modifications of gait needed to step over obstacles attached to a moving treadmill belt. Recordings were made simultaneously from flexor and extensor muscles acting around the shoulder, elbow, wrist, and digits of the forelimb contralateral to the recording site. 2. Analysis of the changes in electromyographic (EMG) activity during the gait modification showed increases in the activity of most flexor muscles of the shoulder and elbow, as well as in the wrist and digit dorsiflexors, when the contralateral forelimb was the first to pass over the obstacle. This period of augmented activity could be subdivided into two parts: one associated with the initial flexion of the limb that was needed to bring it above and over the obstacle (phase I), and the second associated with increased wrist dorsiflexor muscle activity before foot contact (phase II). 3. The discharge frequency of a total of 57/91 (63%) of the recorded PTNs was significantly increased during the gait modification when the limb contralateral to the recording site was the first to step over the obstacle; six of these neurons also showed a significant decrease in their discharge in a different part of the step cycle. In a further 21/91 (23%) neurons, discharge frequency was only decreased, whereas the remaining 13/91 (14%) PTNs showed similar patterns of activity both during control walking and during the gait modifications. 4. Most of those neurons (47/57) in which significant increases in firing frequency were observed, discharged maximally during the period of increased activity of the physiological flexor muscles. Twenty-three of these cells (23/47) discharged maximally in phase I, and 12 (12/47) in phase II. A third population of PTNS (12/47) started to increase their discharge in the stance phase of the step cycle immediately preceding the modified cycle. Seven (7/57) PTNs increased their discharge during the stance phase of the modified cycle, and the remaining three could not be classified as being preferentially related to any one part of the step cycle. 5. The frequency modulation of 41/57 PTNs was less when the leg contralateral to the recording site was the second to encounter the obstacle. In many neurons there was also an appreciable change in the time in the step cycle that peak discharge occurred. These changes in amplitude and timing paralleled the changes observed in the temporal relationships of the muscles.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 88 (4) ◽  
pp. 1791-1814 ◽  
Author(s):  
Sylvain Lavoie ◽  
Trevor Drew

We have examined the contribution of the red nucleus to the control of locomotion in the cat. Neuronal activity was recorded from 157 rubral neurons, including identified rubrospinal neurons, in three cats trained to walk on a treadmill and to step over obstacles attached to the moving belt. Of 72 neurons with a receptive field confined to the contralateral forelimb, 66 were phasically active during unobstructed locomotion. The maximal activity of the majority of neurons (59/66) was centered around the swing phase of locomotion. Slightly more than half of the neurons (36/66) were phasically activity during both swing and stance. In addition, some rubral neurons (14/66) showed multiple periods of phasic activity within the swing phase of the locomotor cycle. Periods of phasic discharge temporally coincident with the swing phase of the ipsilateral limb were observed in 7/66 neurons. During voluntary gait modifications, most forelimb-related neurons (70/72) showed a significant increase in their discharge activity when the contralateral limb was the first to step over the obstacle (lead condition). Maximal activity in nearly all cells (63/70) was observed during the swing phase, and 23/63 rubral neurons exhibited multiple increases of activity during the modified swing phase. A number of cells (18/70) showed multiple periods of increased activity during swing and stance. Many of the neurons (35/63, 56%) showed an increase in activity at the end of the swing phase; this period of activity was temporally coincident with the period of activity in wrist dorsiflexors, such as the extensor digitorum communis. A smaller proportion of neurons with receptive fields restricted to the hindlimbs showed similar characteristics to those observed in the population of forelimb-related neurons. The overall characteristics of these rubral neurons are similar to those that we obtained previously from pyramidal tract neurons recorded from the motor cortex during an identical task. However, in contrast to the results obtained in the rubral neurons, most motor cortical neurons showed only one period of increased activity during the step cycle. We suggest that both structures contribute to the modifications of the pattern of EMG activity that are required to produce the change in limb trajectory needed to step over an obstacle. However, the results suggest an additional role for the red nucleus in regulating intra- and interlimb coordination.


2018 ◽  
Author(s):  
Chad Swank ◽  
Sharon Wang-Price ◽  
Fan Gao ◽  
Sattam Almutairi

BACKGROUND Robotic exoskeleton devices enable individuals with lower extremity weakness to stand up and walk over ground with full weight-bearing and reciprocal gait. Limited information is available on how a robotic exoskeleton affects gait characteristics. OBJECTIVE The purpose of this study was to examine whether wearing a robotic exoskeleton affects temporospatial parameters, kinematics, and muscle activity during gait. METHODS The study was completed by 15 healthy adults (mean age 26.2 [SD 8.3] years; 6 males, 9 females). Each participant performed walking under 2 conditions: with and without wearing a robotic exoskeleton (EKSO). A 10-camera motion analysis system synchronized with 6 force plates and a surface electromyography (EMG) system captured temporospatial and kinematic gait parameters and lower extremity muscle activity. For each condition, data for 5 walking trials were collected and included for analysis. RESULTS Differences were observed between the 2 conditions in temporospatial gait parameters of speed, stride length, and double-limb support time. When wearing EKSO, hip and ankle range of motion (ROM) were reduced and knee ROM increased during the stance phase. However, during the swing phase, knee and ankle ROM were reduced when wearing the exoskeleton bionic suit. When wearing EKSO, EMG activity decreased bilaterally in the stance phase for all muscle groups of the lower extremities and in the swing phase for the distal muscle groups (tibialis anterior and soleus) as well as the left medial hamstrings. CONCLUSIONS Wearing EKSO altered temporospatial gait parameters, lower extremity kinematics, and muscle activity during gait in healthy adults. EKSO appears to promote a type of gait that is disparate from normal gait in first-time users. More research is needed to determine the impact on gait training with EKSO in people with gait impairments.


2004 ◽  
Vol 82 (8-9) ◽  
pp. 715-722 ◽  
Author(s):  
J Duysens ◽  
C M Bastiaanse ◽  
B C.M Smits-Engelsman ◽  
V Dietz

During human gait, electrical stimulation of the foot elicits facilitatory P2 (medium latency) responses in TA (tibialis anterior) at the onset of the swing phase, while the same stimuli cause suppressive responses at the end of swing phase, along with facilitatory responses in antagonists. This phenomenon is called phase-dependent reflex reversal. The suppressive responses can be evoked from a variety of skin sites in the leg and from stimulation of some muscles such as rectus femoris (RF). This paper reviews the data on reflex reversal and adds new data on this topic, using a split-belt paradigm. So far, the reflex reversal in TA could only be studied for the onset and end phases of the step cycle, simply because suppression can only be demonstrated when there is background activity. Normally there are only 2 TA bursts in the step cycle, whereas TA is normally silent during most of the stance phase. To know what happens in the stance phase, one needs to have a means to evoke some background activity during the stance phase. For this purpose, new experiments were carried out in which subjects were asked to walk on a treadmill with a split-belt. When the subject was walking with unequal leg speeds, the walking pattern was adapted to a gait pattern resembling limping. The TA then remained active throughout most of the stance phase of the slow-moving leg, which was used as the primary support. This activity was a result of coactivation of agonistic and antagonistic leg muscles in the supporting leg, and represented one of the ways to stabilize the body. Electrical stimulation was given to a cutaneous nerve (sural) at the ankle at twice the perception threshold. Nine of the 12 subjects showed increased TA activity during stance phase while walking on split-belts, and 5 of them showed pronounced suppressions during the first part of stance when stimuli were given on the slow side. It was concluded that a TA suppressive pathway remains open throughout most of the stance phase in the majority of subjects. The suggestion was made that the TA suppression increases loading of the ankle plantar flexors during the loading phase of stance.Key words: human gait, cutaneous reflexes, sural nerve, tibialis anterior, split belt, reflex reversal.


Sign in / Sign up

Export Citation Format

Share Document