Reaching to Multiple Targets When Standing: The Spatial Organization of Feedforward Postural Adjustments

2009 ◽  
Vol 101 (4) ◽  
pp. 2120-2133 ◽  
Author(s):  
Julia A. Leonard ◽  
Ryan H. Brown ◽  
Paul J. Stapley

We examined the spatial organization of feedforward postural adjustments produced prior to and during voluntary arm reaching movements executed while standing. We sought to investigate whether the activity of postural muscles before and during reaching was directionally tuned and whether a strategy of horizontal force constraint could be observed. To this end, eight human subjects executed self-paced reach-to-point movements on the random illumination of one of 13 light targets placed within a 180° array centered along the midline of the body. Analysis was divided into two periods: a first corresponding to the 250 ms preceding the onset of the reaching movements (termed pPA period) and a second 250-ms period immediately preceding target attainment (the aPA period). For both periods, electromyographic activity of the lower limb muscles revealed a clear directional tuning, with groups of muscles being activated for similar directions of reach. Analysis of horizontal ground reaction forces supported the existence of a force constraint strategy only for the pPA period, however, with those in the aPA period being more widely dispersed. We suggest that the strategy adopted for feedforward pPAs is one where the tuned muscle synergies constrain the forces diagonally away from the center of mass (CoM) to move it within the support base. However, the need to control for final finger and body position for each target during the aPA phase resulted in a distribution of vectors across reaching directions. Overall, our results would support the idea that endpoint limb force during postural tasks depends on the use of functional muscle synergies, which are used to displace the CoM or decelerate the body at the end of the reach.

2013 ◽  
Vol 109 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Seyed A. Safavynia ◽  
Lena H. Ting

We hypothesized that motor outputs are hierarchically organized such that descending temporal commands based on desired task-level goals flexibly recruit muscle synergies that specify the spatial patterns of muscle coordination that allow the task to be achieved. According to this hypothesis, it should be possible to predict the patterns of muscle synergy recruitment based on task-level goals. We demonstrated that the temporal recruitment of muscle synergies during standing balance control was robustly predicted across multiple perturbation directions based on delayed sensorimotor feedback of center of mass (CoM) kinematics (displacement, velocity, and acceleration). The modulation of a muscle synergy's recruitment amplitude across perturbation directions was predicted by the projection of CoM kinematic variables along the preferred tuning direction(s), generating cosine tuning functions. Moreover, these findings were robust in biphasic perturbations that initially imposed a perturbation in the sagittal plane and then, before sagittal balance was recovered, perturbed the body in multiple directions. Therefore, biphasic perturbations caused the initial state of the CoM to differ from the desired state, and muscle synergy recruitment was predicted based on the error between the actual and desired upright state of the CoM. These results demonstrate that that temporal motor commands to muscle synergies reflect task-relevant error as opposed to sensory inflow. The proposed hierarchical framework may represent a common principle of motor control across motor tasks and levels of the nervous system, allowing motor intentions to be transformed into motor actions.


1996 ◽  
Vol 76 (3) ◽  
pp. 2042-2048 ◽  
Author(s):  
E. Bonda ◽  
S. Frey ◽  
M. Petrides

1. The neural systems underlying body-space mental representation were studied by measuring changes in regional cerebral blood flow (CBF) with positron emission tomography in human subjects. 2. The experimental paradigm involved identification of the left or the right hand of the experimenter presented in different orientations or the palm of the subject's right hand. The subjects were required to decide whether it was the left or the right hand that was presented. To perform this task, the subjects had to move mentally the position of their own arm to adopt that of the experimenter's arm. The control condition involved the same type of tactual stimulation without the requirement of mental transformations of the subject's body position. The distribution of CBF was measured by means of the water bolus H2(15)O methodology during the performance of these tasks. 3. Comparison of the distribution of CBF between the experimental and control tasks was carried out to reveal changes specific to the mental transformations of the subject's body. Significant blood flow increases were observed in the caudal superior parietal cortex, including the intraparietal sulcus, and the adjacent medial parietal cortex. These findings demonstrated that there is a dorsomedially directed parietal system underlying mental transformations of the body in interactive relation with external space.


2015 ◽  
Vol 113 (7) ◽  
pp. 2692-2699 ◽  
Author(s):  
Jennifer R. Vranish ◽  
E. Fiona Bailey

The genioglossus (GG) is an extrinsic muscle of the human tongue that plays a critical role in preserving airway patency. In the last quarter century, >50 studies have reported on respiratory-related GG electromyographic (EMG) activity in human subjects. Remarkably, of the studies performed, none have duplicated subject body position, electrode recording locations, and/or breathing task(s), making interpretation and integration of the results across studies extremely challenging. In addition, more recent research assessing lingual anatomy and muscle contractile properties has identified regional differences in muscle fiber type and myosin heavy chain expression, giving rise to the possibility that the anterior and posterior regions of the muscle fulfill distinct functions. Here, we assessed EMG activity in anterior and posterior regions of the GG, across upright and supine, in rest breathing and in volitionally modulated breathing tasks. We tested the hypotheses that GG EMG is greater in the posterior region and in supine, except when breathing is subject to volitional modulation. Our results show differences in the magnitude of EMG (%regional maximum) between anterior and posterior muscle regions (7.95 ± 0.57 vs. 11.10 ± 0.99, respectively; P < 0.001), and between upright and supine (8.63 ± 0.73 vs. 10.42 ± 0.90, respectively; P = 0.008). Although the nature of a task affects the magnitude of EMG ( P < 0.001), the effect is similar for anterior and posterior muscle regions and across upright and supine ( P > 0.2).


1995 ◽  
Vol 79 (6) ◽  
pp. 2078-2085 ◽  
Author(s):  
M. Bourdin ◽  
A. Belli ◽  
L. M. Arsac ◽  
C. Bosco ◽  
J. R. Lacour

This investigation examined, in a group of 10 trained male runners, the effect of vertical loading during level treadmill running at a velocity of 5 m/s. The net energy cost of running (Cr), the external work of the center of mass of the body (Wext; both expressed in J.kg-1.m-1), and the eccentric-to-concentric ratio (Ecc/Con) of integrated electromyographic activity for the vastus lateralis (VL) and gastrocnemius lateralis muscles were measured. It was observed that Wext and Ecc/Con for the VL could explain a large part of the interindividual variations in Cr. This result reinforces the hypothesis that Ecc/Con could be a good index of effectiveness in the stretch-shortening cycle. When the subjects ran with a vertical load of 9.3% of their body mass, Cr and Wext were significantly reduced (P < 0.01 and P < 0.05, respectively), whereas Ecc/Con for the VL and gastrocnemius lateralis remained unchanged. The variations in Cr and Wext due to vertical loading were significantly correlated (r = 0.75; P < 0.01). It was then concluded that the significant improvement of Cr observed with the added load was mainly due to the fact that Wext was significantly decreased.


1991 ◽  
Vol 71 (3) ◽  
pp. 863-870 ◽  
Author(s):  
J. P. He ◽  
R. Kram ◽  
T. A. McMahon

Using a linear mass-spring model of the body and leg (T. A. McMahon and G. C. Cheng. J. Biomech. 23: 65–78, 1990), we present experimental observations of human running under simulated low gravity and an analysis of these experiments. The purpose of the study was to investigate how the spring properties of the leg are adjusted to different levels of gravity. We hypothesized that leg spring stiffness would not change under simulated low-gravity conditions. To simulate low gravity, a nearly constant vertical force was applied to human subjects via a bicycle seat. The force was obtained by stretching long steel springs via a hand-operated winch. Subjects ran on a motorized treadmill that had been modified to include a force platform under the tread. Four subjects ran at one speed (3.0 m/s) under conditions of normal gravity and six simulated fractions of normal gravity from 0.2 to 0.7 G. For comparison, subjects also ran under normal gravity at five speeds from 2.0 to 6.0 m/s. Two basic principles emerged from all comparisons: both the stiffness of the leg, considered as a linear spring, and the vertical excursion of the center of mass during the flight phase did not change with forward speed or gravity. With these results as inputs, the mathematical model is able to account correctly for many of the changes in dynamic parameters that do take place, including the increasing vertical stiffness with speed at normal gravity and the decreasing peak force observed under conditions simulating low gravity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252119
Author(s):  
J. Lucas McKay ◽  
Kimberly C. Lang ◽  
Sistania M. Bong ◽  
Madeleine E. Hackney ◽  
Stewart A. Factor ◽  
...  

Although Parkinson disease (PD) causes profound balance impairments, we know very little about how PD impacts the sensorimotor networks we rely on for automatically maintaining balance control. In young healthy people and animals, muscles are activated in a precise temporal and spatial organization when the center of body mass (CoM) is unexpectedly moved that is largely automatic and determined by feedback of CoM motion. Here, we show that PD alters the sensitivity of the sensorimotor feedback transformation. Importantly, sensorimotor feedback transformations for balance in PD remain temporally precise, but become spatially diffuse by recruiting additional muscle activity in antagonist muscles during balance responses. The abnormal antagonist muscle activity remains precisely time-locked to sensorimotor feedback signals encoding undesirable motion of the body in space. Further, among people with PD, the sensitivity of abnormal antagonist muscle activity to CoM motion varies directly with the number of recent falls. Our work shows that in people with PD, sensorimotor feedback transformations for balance are intact but disinhibited in antagonist muscles, likely contributing to balance deficits and falls.


2010 ◽  
Vol 104 (6) ◽  
pp. 3064-3073 ◽  
Author(s):  
Germana Cappellini ◽  
Yuri P. Ivanenko ◽  
Nadia Dominici ◽  
Richard E. Poppele ◽  
Francesco Lacquaniti

During the evolution of bipedal modes of locomotion, a sequential rostrocaudal activation of trunk muscles due to the undulatory body movements was replaced by more complex and discrete bursts of activity. Nevertheless, the capacity for segmental rhythmogenesis and the rostrocaudal propagation of spinal cord activity has been conserved. In humans, motoneurons of different muscles are arranged in columns, with a specific grouping of muscles at any given segmental level. The muscle patterns of locomotor activity and the biomechanics of the body center of mass have been studied extensively, but their interrelationship remains poorly understood. Here we mapped the electromyographic activity recorded from 30 bilateral leg muscles onto the spinal cord in approximate rostrocaudal locations of the motoneuron pools during walking and running in humans. We found that the rostrocaudal displacements of the center of bilateral motoneuron activity mirrored the changes in the energy due to the center-of-body mass motion. The results suggest that biomechanical mechanisms of locomotion, such as the inverted pendulum in walking and the pogo-stick bouncing in running, may be tightly correlated with specific modes of progression of motor pool activity rostrocaudally in the spinal cord.


2000 ◽  
Vol 203 (23) ◽  
pp. 3585-3594 ◽  
Author(s):  
J. Liao ◽  
G.V. Lauder

Basal ray-finned fishes possess a heterocercal tail in which the dorsal lobe containing the extension of the vertebral column is longer than the ventral lobe. Clarifying the function of the heterocercal tail has proved elusive because of the difficulty of measuring the direction of force produced relative to body position in the aquatic medium. We measured the direction of force produced by the heterocercal tail of the white sturgeon (Acipenser transmontanus) by visualizing flow in the wake of the tail using digital particle image velocimetry (DPIV) while simultaneously recording body position and motion using high-speed video. To quantify tail function, we measured the vertical body velocity, the body angle and the path angle of the body from video recordings and the vortex ring axis angle and vortex jet angle from DPIV recordings of the wake downstream from the tail. These variables were measured for sturgeon exhibiting three swimming behaviors at 1.2 L s(−)(1), where L is total body length: rising through the water column, holding vertical position, and sinking through the water column. For vertical body velocity, body angle and path angle values, all behaviors were significantly different from one another. For vortex ring axis angle and vortex jet angle, rising and holding behavior were not significantly different from each other, but both were significantly different from sinking behavior. During steady horizontal swimming, the sturgeon tail generates a lift force relative to the path of motion but no rotational moment because the reaction force passes through the center of mass. For a rising sturgeon, the tail does not produce a lift force but causes the tail to rotate ventrally in relation to the head since the reaction force passes ventral to the center of mass. While sinking, the direction of the fluid jet produced by the tail relative to the path of motion causes a lift force to be created and causes the tail to rotate dorsally in relation to the head since the reaction force passes dorsal to the center of mass. These data provide evidence that sturgeon can actively control the direction of force produced by their tail while maneuvering through the water column because the relationship between vortex jet angle and body angle is not constant.


Sign in / Sign up

Export Citation Format

Share Document