scholarly journals A comprehensive assessment of genioglossus electromyographic activity in healthy adults

2015 ◽  
Vol 113 (7) ◽  
pp. 2692-2699 ◽  
Author(s):  
Jennifer R. Vranish ◽  
E. Fiona Bailey

The genioglossus (GG) is an extrinsic muscle of the human tongue that plays a critical role in preserving airway patency. In the last quarter century, >50 studies have reported on respiratory-related GG electromyographic (EMG) activity in human subjects. Remarkably, of the studies performed, none have duplicated subject body position, electrode recording locations, and/or breathing task(s), making interpretation and integration of the results across studies extremely challenging. In addition, more recent research assessing lingual anatomy and muscle contractile properties has identified regional differences in muscle fiber type and myosin heavy chain expression, giving rise to the possibility that the anterior and posterior regions of the muscle fulfill distinct functions. Here, we assessed EMG activity in anterior and posterior regions of the GG, across upright and supine, in rest breathing and in volitionally modulated breathing tasks. We tested the hypotheses that GG EMG is greater in the posterior region and in supine, except when breathing is subject to volitional modulation. Our results show differences in the magnitude of EMG (%regional maximum) between anterior and posterior muscle regions (7.95 ± 0.57 vs. 11.10 ± 0.99, respectively; P < 0.001), and between upright and supine (8.63 ± 0.73 vs. 10.42 ± 0.90, respectively; P = 0.008). Although the nature of a task affects the magnitude of EMG ( P < 0.001), the effect is similar for anterior and posterior muscle regions and across upright and supine ( P > 0.2).

2009 ◽  
Vol 101 (4) ◽  
pp. 2120-2133 ◽  
Author(s):  
Julia A. Leonard ◽  
Ryan H. Brown ◽  
Paul J. Stapley

We examined the spatial organization of feedforward postural adjustments produced prior to and during voluntary arm reaching movements executed while standing. We sought to investigate whether the activity of postural muscles before and during reaching was directionally tuned and whether a strategy of horizontal force constraint could be observed. To this end, eight human subjects executed self-paced reach-to-point movements on the random illumination of one of 13 light targets placed within a 180° array centered along the midline of the body. Analysis was divided into two periods: a first corresponding to the 250 ms preceding the onset of the reaching movements (termed pPA period) and a second 250-ms period immediately preceding target attainment (the aPA period). For both periods, electromyographic activity of the lower limb muscles revealed a clear directional tuning, with groups of muscles being activated for similar directions of reach. Analysis of horizontal ground reaction forces supported the existence of a force constraint strategy only for the pPA period, however, with those in the aPA period being more widely dispersed. We suggest that the strategy adopted for feedforward pPAs is one where the tuned muscle synergies constrain the forces diagonally away from the center of mass (CoM) to move it within the support base. However, the need to control for final finger and body position for each target during the aPA phase resulted in a distribution of vectors across reaching directions. Overall, our results would support the idea that endpoint limb force during postural tasks depends on the use of functional muscle synergies, which are used to displace the CoM or decelerate the body at the end of the reach.


2007 ◽  
Vol 97 (1) ◽  
pp. 933-936 ◽  
Author(s):  
E. Fiona Bailey ◽  
Amber D. Rice ◽  
Andrew J. Fuglevand

The tongue participates in a range of complex oromotor behaviors, including mastication, swallowing, respiration, and speech. Previous electromyographic studies of the human tongue have focused on respiratory-related tongue muscle activities and their role in maintaining upper airway patency. Remarkably, the activities of human hypoglossal motor units have not been studied during the execution of voluntary maneuvers. We recorded single motor unit activity using tungsten microelectrodes in the genioglossus muscle of 10 healthy human subjects performing both slow tongue protrusions and a static holding maneuver. Displacement of the tongue was detected by an isotonic transducer coupled to the lingual surface through a customized lever arm. For protrusion trials, the firing rate at recruitment was 13.1 ± 3 Hz and increased steeply to an average of 24 ± 6 Hz, often with very modest increases in tongue protrusion. For the static holding task, the average firing rate was 16.1 ± 4 Hz, which is surprisingly high relative to limb motor units. The average coefficient of variation of interspike intervals was ∼20% (range, 10–28%). These are the first recordings of their type obtained in human subjects and provide an initial glimpse into the voluntary control of hypoglossal motoneurons during tongue movements presumably instigated by activity in the motor cortex.


2010 ◽  
Vol 103 (3) ◽  
pp. 1315-1321 ◽  
Author(s):  
Patrick A. Richardson ◽  
E. Fiona Bailey

The genioglossus (GG) is considered the principle protrudor muscle of the human tongue. Unlike most skeletal muscles, GG electromyographic (EMG) activities are robustly preserved in sleep and thus may fulfill a critical role in preserving airway patency. Previous studies in human subjects also confirm that the GG EMG increases in response to chemoreceptor and mechanoreceptor stimulation. This increase occurs secondary to the recruitment of previously inactive motor units (MUs) and/or an increase in firing rate of already active MUs. Which strategy the nervous system uses when the synaptic drive onto GG motoneurons increases is not known. Here we report on GG whole muscle and tonic MU activities under conditions that mimic sleep, i.e., mild-moderate elevations in CO2 (3% inspired CO2 or the addition of a 1.0 l dead space) and elevated airway resistance. Based on previous work in rat, we hypothesized that mild hypercapnia would increase the firing rates of tonic MUs and that these effects would be further potentiated by a modest increase in airway resistance. Fine wire and tungsten microelectrodes were inserted into the GG to record whole muscle and single MU activities in 21 subjects (13 women, 8 men; 20–55 yr). Either 3% inspired CO2 or added dead space resulted in a 200–300% increase in the amplitude of both tonic and phasic components of the whole muscle GG EMG and a doubling of minute ventilation. Despite these changes, recordings obtained from a total of 84 tonically discharging GG single MUs provide no evidence of a change in firing rate under any of the conditions. On this basis we conclude that in healthy adults, the increase in the tonic component of the whole muscle GG EMG secondary to mild hypercapnia is due almost exclusively to the recruitment of previously inactive MUs.


2019 ◽  
Vol 133 (22) ◽  
pp. 2283-2299
Author(s):  
Apabrita Ayan Das ◽  
Devasmita Chakravarty ◽  
Debmalya Bhunia ◽  
Surajit Ghosh ◽  
Prakash C. Mandal ◽  
...  

Abstract The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)−/− mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE−/− mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


2012 ◽  
Vol 303 (5) ◽  
pp. F641-F647 ◽  
Author(s):  
Huiyi H. Chang ◽  
Leif A. Havton

Increased abdominal muscle wall activity may be part of a visceromotor reflex (VMR) response to noxious stimulation of the bladder. However, information is sparse regarding the effects of cauda equina injuries on the VMR in experimental models. We studied the effects of a unilateral L6-S1 ventral root avulsion (VRA) injury and acute ventral root reimplantation (VRI) into the spinal cord on micturition reflexes and electromyographic activity of the abdominal wall in rats. Cystometrogram (CMG) and electromyography (EMG) of the abdominal external oblique muscle (EOM) were performed. All rats demonstrated EMG activity of the EOM associated with reflex bladder contractions. At 1 wk after VRA and VRI, the duration of the EOM EMG activity associated with reflex voiding was significantly prolonged compared with age-matched sham rats. However, at 3 wk postoperatively, the duration of the EOM responses remained increased in the VRA series but had normalized in the VRI group. The EOM EMG duration was normalized for both VRA and VRI groups at 8–12 wk postoperatively. CMG recordings show increased contraction duration at 1 and 3 wk postoperatively for the VRA series, whereas the contraction duration was only increased at 1 wk postoperatively for the VRI series. Our studies suggest that a unilateral lumbosacral VRA injury results in a prolonged VMR to bladder filling using a physiological saline solution. An acute root replantation decreased the VMR induced by VRA injury and provides earlier sensory recovery.


1979 ◽  
Vol 46 (4) ◽  
pp. 772-779 ◽  
Author(s):  
R. T. Brouillette ◽  
B. T. Thach

The ability of the extrathoracic airway (ETA) to remain open when exposed to negative pressure was investigated in rabbits. Postmortem, the ETA collapsed at -6.3 +/- 0.6 cmH2O whereas, during airway occlusion maneuvers in lightly anesthetized animals, it remained patent at pressures as low as -80 cmH2O. This discrepancy suggested that a neuromuscular mechanism maintains ETA patency. Four findings indicated that the genioglossus and geniohyoid muscles, which pull the tongue and hyoid bone anteriorly, help maintain ETA patency: 1) anterior movement of the hyoid bone increased the negative pressure at which the ETA collapsed postmortem, 2) ETA closure during occluded inspirations occurred after 12th nerve section abolished electromyographic activity in these muscles and 3) after deep anesthesia depressed such activity, and 4) closing pressure was linearly related to peak integrated electromyograms of the two muscles. After 12th nerve section, ETA closing pressure became more negative with progressive asphyxia greatly exceeding postmortem closing pressure, which suggests that other muscles also help maintain ETA patency. Blood gas tensions, respiratory system mechanoreceptors, and depth of anesthesia appear to influence genioglossus and geniohyoid activity.


1999 ◽  
Vol 82 (5) ◽  
pp. 2310-2326 ◽  
Author(s):  
Paul L. Gribble ◽  
David J. Ostry

During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these “interaction torques.” Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow ( experiment 1) and shoulder ( experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for interaction torques—loads arising at one joint that depend on motion about other joints.


2009 ◽  
Vol 106 (3) ◽  
pp. 893-903 ◽  
Author(s):  
Z. Ghanim ◽  
J. C. Lamy ◽  
A. Lackmy ◽  
V. Achache ◽  
N. Roche ◽  
...  

The vestibular responses evoked by transmastoid galvanic stimulation (GS) in the rectified soleus electromyogram (EMG) in freely standing human subjects disappear when seated. However, a GS-induced facilitation of the soleus monosynaptic (H and tendon jerk) reflex has been described in few experiments in subjects lying prone or seated. This study addresses the issue of whether this reflex facilitation while seated is of vestibulospinal origin. GS-induced responses in the soleus (modulation of the rectified ongoing EMG and of the monosynaptic reflexes) were compared in the same normal subjects while freely standing and sitting with back and head support. The polarity-dependent biphasic responses in the free-standing position were replaced by a non-polarity-dependent twofold facilitation while seated. The effects of GS were hardly detectable in the rectified ongoing voluntary EMG activity, weak for the H reflex, but large and constant for the tendon jerk. They were subject to habituation. Anesthesia of the skin beneath the GS electrodes markedly reduced the reflex facilitation, while a similar, although weaker, facilitation of the tendon jerk was observed when GS was replaced with purely cutaneous stimulation, a tap to the tendon of the sternomastoid muscle, or an auditory click. The stimulation polarity independence of the GS-induced reflex facilitation argues strongly against a vestibular response. However, the vestibular afferent volley, insufficient to produce a vestibular reflex response while seated, could summate with the GS-induced tactile or proprioceptive volley to produce a startle-like response responsible for the reflex facilitation.


2000 ◽  
Vol 83 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Robert A. Scheidt ◽  
W. Zev Rymer

Changes were studied in neuromotor control that were evoked by constraining the motion of the elbow joint during planar, supported movements of the dominant arm in eight normal human subjects. Electromyograph (EMG) recordings from shoulder and arm muscles were used to determine whether the normal multijoint muscle activity patterns associated with reaching to a visual target were modified when the movement was reduced to a single-joint task, by pinning the elbow to a particular location in the planar work space. Three blocks of 150 movements each were used in the experiments. Subjects were presented with the unconstrained task in the first and third blocks with an intervening block of constrained trials. Kinematic, dynamic, and EMG measures of performance were compared across blocks. The imposition of the pin constraint caused predictable changes in kinematic performance, in that near-linear motions of the hand became curved. This was followed by changes in limb dynamic performance at the elbow. However, changes in EMG activity at the shoulder lagged the kinematic changes substantially (by about 15 trials). The gradual character of the changes in EMG timing does not support a primary role for segmental reflex action in mediating the transition between multijoint and single-joint control strategies. Furthermore, the scope and magnitude of these changes argues against the notion that human motor performance is driven by the optimization of muscle- or joint-related criteria alone. The findings are best described as reflecting the actions of a feedforward adaptive controller that has properties that are modified progressively according to the environmental state.


1989 ◽  
Vol 32 (4) ◽  
pp. 749-754 ◽  
Author(s):  
Adrienne L. Perlman ◽  
Erich S. Luschei ◽  
Charles E. Du Mond

The purpose of this investigation was to determine, in a quantitative manner, which, if any, nonswallowing tasks produce significant levels of activation in the superior pharyngeal constrictor muscle of normal human subjects. Bipolar hooked wire electrodes were inserted in the superior pharyngeal constrictor muscle of 15 healthy subjects. Electrode placement was controlled. Each subject performed two reflexive tasks, six voluntary tasks requiring phonation, and four nonspeech voluntary tasks. The electromyogram (EMG) was rectified and integrated. The resulting number was then transformed by taking its natural logarithm. An ANOVA was performed and a linear model was estimated. The magnitude of the EMG activity was related to the location of the electrodes. The largest values were recorded in the lateral-superior placement, followed by the lateral-inferior, medial-inferior and medial-superior. The superior pharyngeal contrictor was found to be a muscle activated primarily during reflexive activity. There was a general trend in the amplitude of EMG activity in relationship to task. Swallowing produced the greatest amount of activity and a gag produced about 60% of the activity produced by the swallow. Two tasks, production of the work /hk/ in which the phoneme /k/ was stressed, and a "modified Valsalva," which was actually a hard /k/ held for several seconds, produced the next greatest level of EMG.


Sign in / Sign up

Export Citation Format

Share Document