Laminin Binding Conveys Mechanosensing in Endothelial Cells

Physiology ◽  
2002 ◽  
Vol 17 (4) ◽  
pp. 166-169 ◽  
Author(s):  
Torsten Gloe ◽  
Ulrich Pohl

In endothelial cells, forces like shear stress are transferred to focal adhesion sites and activate in concert with matrix receptor kinases, leading to an initiation of signaling cascades. The laminin binding protein is one of these matrix receptors and is critically involved in sensing and quantification of shear stress.

1988 ◽  
Vol 106 (5) ◽  
pp. 1773-1786 ◽  
Author(s):  
J Yannariello-Brown ◽  
U Wewer ◽  
L Liotta ◽  
J A Madri

Affinity chromatography and immunolocalization techniques were used to investigate the mechanism(s) by which endothelial cells interact with the basement membrane component laminin. Bovine aortic endothelial cells (BAEC) membranes were solubilized and incubated with a laminin-Sepharose affinity column. SDS-PAGE analysis of the eluted proteins identified a 69-kD band as the major binding protein, along with minor components migrating at 125, 110, 92, 85, 75, 55, and 30 kD. Polyclonal antibodies directed against a peptide sequence of the 69-kD laminin-binding protein isolated from human tumor cells identified this protein in BAEC lysates. In frozen sections, these polyclonal antibodies and monoclonal antibodies raised against human tumor 69-kD stained the endothelium of bovine aorta and the medial smooth muscle cells, but not surrounding connective tissue or elastin fibers. When nonpermeabilized BAEC were stained in an in vitro migration assay, there appeared to be apical patches of 69 kD staining in stationary cells. However, when released from contact inhibition, 69 kD was localized to ruffling membranes on cells at the migrating front. Permeabilized BAEC stained for 69 kD diffusely, with a granular perinuclear distribution and in linear arrays throughout the cell. During migration a redistribution from diffuse to predominanately linear arrays that co-distributed with actin microfilaments was noted in double-label experiments. The 69-kD laminin-binding protein colocalized with actin filaments in permeabilized cultured microvascular endothelial cells in a continuous staining pattern at 6 h postplating which redistributed to punctate patches along the length of the filaments at confluence (96 h). In addition, 69 kD co-distribution with laminin could also be demonstrated in cultured subconfluent cells actively synthesizing matrix. Endothelial cells express a 69-kD laminin-binding protein that is membrane associated and appears to colocalize with actin microfilaments. The topological distribution of 69 kD and its cytoskeletal associations can be modulated by the cell during cell migration and growth suggesting that 69 kD may be a candidate for a membrane protein involved in signal transduction from extracellular matrix to cell via cytoskeletal connections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Jiménez-Munguía ◽  
Zuzana Tomečková ◽  
Evelína Mochnáčová ◽  
Katarína Bhide ◽  
Petra Majerová ◽  
...  

AbstractStreptococcus pneumoniae invades the CNS and triggers a strong cellular response. To date, signaling events that occur in the human brain microvascular endothelial cells (hBMECs), in response to pneumococci or its surface adhesins are not mapped comprehensively. We evaluated the response of hBMECs to the adhesion lipoprotein (a laminin binding protein—Lbp) or live pneumococci. Lbp is a surface adhesin recently identified as a potential ligand, which binds to the hBMECs. Transcriptomic analysis was performed by RNA-seq of three independent biological replicates and validated with qRT-PCR using 11 genes. In total 350 differentially expressed genes (DEGs) were identified after infection with S. pneumoniae, whereas 443 DEGs when challenged with Lbp. Total 231 DEGs were common in both treatments. Integrative functional analysis revealed participation of DEGs in cytokine, chemokine, TNF signaling pathways and phagosome formation. Moreover, Lbp induced cell senescence and breakdown, and remodeling of ECM. This is the first report which maps complete picture of cell signaling events in the hBMECs triggered against S. pneumoniae and Lbp. The data obtained here could contribute in a better understanding of the invasion of pneumococci across BBB and underscores role of Lbp adhesin in evoking the gene expression in neurovascular unit.


1997 ◽  
Vol 287 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. C. Schaller ◽  
E. Keppel ◽  
U. Fenger

Sign in / Sign up

Export Citation Format

Share Document