Suppression of 11β-hydroxysteroid dehydrogenase type 1 with RNA interference substantially attenuates 3T3-L1 adipogenesis

2008 ◽  
Vol 32 (3) ◽  
pp. 343-351 ◽  
Author(s):  
Yong Liu ◽  
Frank Park ◽  
Jennifer L. Pietrusz ◽  
Guangfu Jia ◽  
Ravinder J. Singh ◽  
...  

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), which regulates the local level of glucocorticoids, has been suggested to be involved in the development of obesity. A definitive functional role for 11β-HSD1 in adipogenesis, however, remains to be established. We developed 3T3-L1 cell lines stably transfected with a small hairpin RNA (shRNA) targeting 11β-HSD1. A shRNA containing two nucleotide substitutions was used as a control. Silencing of 11β-HSD1 substantially attenuated the accumulation of lipid droplets and the expression of adipogenesis marker genes, which was induced by a mixture containing either corticosterone or dexamethasone. Silencing of 11β-HSD1 increased the concentration of 11-dehydrocorticosterone in the culture supernatant but did not significantly affect the levels of corticosterone or dexamethasone. Translocation of glucocorticoid receptors to the nucleus in response to glucocorticoids was significantly attenuated by silencing 11β-HSD1. The number of cells entering the S phase of the cell cycle following the induction of adipogenesis was significantly reduced by silencing 11β-HSD1. 11β-HSD1 shRNA delivered by lentiviral vectors after the induction of differentiation, however, did not affect the progression of adipogenesis. These results indicate that 11β-HSD1 plays a significant functional role in the initiation of 3T3-L1 adipogenesis and provide new mechanistic insights into the role of 11β-HSD1 in the development of obesity and related diseases.

2013 ◽  
pp. 1-1
Author(s):  
Kajal Manwani ◽  
Tak Y Man ◽  
Christopher J Kenyon ◽  
Ruth Andrew ◽  
Karen E Chapman ◽  
...  

1995 ◽  
Vol 55 (5-6) ◽  
pp. 525-532 ◽  
Author(s):  
Matti Poutanen ◽  
Veli Isomaa ◽  
Hellevi Peltoketo ◽  
Reijo Vihko

ChemMedChem ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. 476-487 ◽  
Author(s):  
Alexander Oster ◽  
Tobias Klein ◽  
Claudia Henn ◽  
Ruth Werth ◽  
Sandrine Marchais-Oberwinkler ◽  
...  

2016 ◽  
Vol 12 (8) ◽  
pp. 2408-2416 ◽  
Author(s):  
Ravikumar Reddi ◽  
Kiran Kumar Singarapu ◽  
Debnath Pal ◽  
Anthony Addlagatta

Unique C–H⋯S hydrogen bonding interactions allow nature to attain recognition specificity between molecular interfaces where there is no apparent scope for classical hydrogen bonding or polar interactions.


2017 ◽  
Vol 58 (1) ◽  
pp. R1-R13 ◽  
Author(s):  
Gillian A Gray ◽  
Christopher I White ◽  
Raphael F P Castellan ◽  
Sara J McSweeney ◽  
Karen E Chapman

Corticosteroids influence the development and function of the heart and its response to injury and pressure overload via actions on glucocorticoid (GR) and mineralocorticoid (MR) receptors. Systemic corticosteroid concentration depends largely on the activity of the hypothalamic–pituitary–adrenal (HPA) axis, but glucocorticoid can also be regenerated from intrinsically inert metabolites by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), selectively increasing glucocorticoid levels within cells and tissues. Extensive studies have revealed the roles for glucocorticoid regeneration by 11β-HSD1 in liver, adipose, brain and other tissues, but until recently, there has been little focus on the heart. This article reviews the evidence for glucocorticoid metabolism by 11β-HSD1 in the heart and for a role of 11β-HSD1 activity in determining the myocardial growth and physiological function. We also consider the potential of 11β-HSD1 as a therapeutic target to enhance repair after myocardial infarction and to prevent the development of cardiac remodelling and heart failure.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169861 ◽  
Author(s):  
Juliane Midori Ikebara ◽  
Silvia Honda Takada ◽  
Débora Sterzeck Cardoso ◽  
Natália Myuki Moralles Dias ◽  
Beatriz Crossiol Vicente de Campos ◽  
...  

2014 ◽  
Vol 92 (8) ◽  
pp. 703-706 ◽  
Author(s):  
David Z.I. Cherney ◽  
Fengxia Xiao ◽  
Joseph Zimpelmann ◽  
Ronnie L.H. Har ◽  
Vesta Lai ◽  
...  

Angiotensin-converting enzyme 2 (ACE2) is expressed in the kidney and may be renoprotective. We determined whether urinary ACE2 enzyme activity and protein levels (ELISA), as well as angiotensinogen and ACE, are elevated during clamped euglycemia (4–6 mmol·L–1) in patients with uncomplicated type 1 diabetes (T1D, n = 58) compared with normoglycemic controls (n = 21). We also measured the effect of clamped hyperglycemia (9–11 mmol·L–1) on each urinary factor in T1D patients. Urinary ACE2 activity and protein levels were higher during clamped euglycemia in T1D compared with the controls (p < 0.0001). In contrast, urinary angiotensinogen levels (p = 0.27) and ACE excretion (p = 0.68) did not differ. In response to clamped hyperglycemia in T1D, urinary ACE2 protein decreased (p < 0.0001), whereas urinary ACE2 activity as well as angiotensinogen and ACE levels remained unchanged. Urinary ACE2 activity and protein expression are increased in T1D patients prior to the onset of clinical complications. Further work is required to determine the functional role of urinary ACE2 in early T1D.


2018 ◽  
Author(s):  
Caitlin N Spaulding ◽  
Henry Louis Schreiber ◽  
Weili Zheng ◽  
Karen W Dodson ◽  
Jennie E Hazen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document