Exon truncation by alternative splicing of murine ICAM-1

2002 ◽  
Vol 12 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Joseph P. Mizgerd ◽  
Matt R. Spieker ◽  
Michal M. Lupa

The murine gene for intercellular adhesion molecule-1 (ICAM-1) encodes multiple products, arising from alternative splicing. Full-length ICAM-1 contains five extracellular Ig domains, each encoded by a separate exon. Alternatively spliced forms have Ig domains 2, 3, and/or 4 excised as a result of exon skipping. We report here a novel splice variant of murine ICAM-1, resulting from exon truncation rather than exon skipping and affecting Ig domain 5. A 5′ splice donor site within exon 6 generates transcripts missing 69 nucleic acids from the 3′ terminus of the exon. This in-frame exon truncation is predicted to replace 24 amino acids within Ig domain 5 with a single aspartic acid residue, yielding a structure other than an Ig domain immediately external to the membrane. Expression of this alternatively spliced form is induced in mouse lungs, spleen, and kidneys during LPS-induced pulmonary inflammation. Since the affected region is critical for ICAM-1 presentation, dimerization, and solubilization, this alternative splice variant may have unique physiological functions.

1994 ◽  
Vol 14 (1) ◽  
pp. 567-575
Author(s):  
H Takechi ◽  
N Hosokawa ◽  
K Hirayoshi ◽  
K Nagata

The mouse HSP47 gene consists of six exons separated by five introns. Three HSP47 cDNAs differing only in their 5' noncoding regions have been reported. One of these alternatively spliced mRNAs was detected only after heat shock, which caused an alternative 5' splice donor site selection. Other stress inducers, including an amino acid analog and sodium arsenite, had no effect on the alternative splicing. The alternatively spliced mRNA, which was 169 nucleotides longer in the 5' noncoding region compared to mRNA transcribed in non-heat shock conditions, was efficiently translated under heat shock conditions. This novel finding that alternative splicing is caused by artificial treatment like heat shock will provide a useful in vivo model for understanding the exon-intron recognition mechanism as well as heat shock-induced alterations in gene expression.


1990 ◽  
Vol 10 (10) ◽  
pp. 5271-5278 ◽  
Author(s):  
I Mineo ◽  
P R Clarke ◽  
R L Sabina ◽  
E W Holmes

AMP deaminase (AMPD) is a central enzyme in eucaryotic energy metabolism, and tissue-specific as well as stage-specific isoforms are found in many vertebrates. This study demonstrates the AMPD1 gene product in rat is alternatively spliced. The second exon, a 12-base miniexon, was found to be excluded or included in a tissue-specific and stage-specific pattern. This example of cassette splicing utilizes a unique pathway through an RNA intermediate that generates an alternative 5' splice donor site at the point where exon 2 is ligated to exon 1. In the analogous intermediate of human AMPD1, the potential 5' splice donor site created at the boundary of exon 1 and exon 2 was a poor substrate for splicing because of differences in exon 2 sequences, and human AMPD1 was not alternatively spliced. These results demonstrate that in some cases alternative splicing may proceed through an RNA intermediate that generates an alternative splice donor site not present in the primary transcript. Discrimination between alternative 5' splice donor sites in the RNA intermediate of AMPD1 is apparently controlled by tissue-specific and stage-specific signals.


1994 ◽  
Vol 14 (1) ◽  
pp. 567-575 ◽  
Author(s):  
H Takechi ◽  
N Hosokawa ◽  
K Hirayoshi ◽  
K Nagata

The mouse HSP47 gene consists of six exons separated by five introns. Three HSP47 cDNAs differing only in their 5' noncoding regions have been reported. One of these alternatively spliced mRNAs was detected only after heat shock, which caused an alternative 5' splice donor site selection. Other stress inducers, including an amino acid analog and sodium arsenite, had no effect on the alternative splicing. The alternatively spliced mRNA, which was 169 nucleotides longer in the 5' noncoding region compared to mRNA transcribed in non-heat shock conditions, was efficiently translated under heat shock conditions. This novel finding that alternative splicing is caused by artificial treatment like heat shock will provide a useful in vivo model for understanding the exon-intron recognition mechanism as well as heat shock-induced alterations in gene expression.


1990 ◽  
Vol 10 (10) ◽  
pp. 5271-5278
Author(s):  
I Mineo ◽  
P R Clarke ◽  
R L Sabina ◽  
E W Holmes

AMP deaminase (AMPD) is a central enzyme in eucaryotic energy metabolism, and tissue-specific as well as stage-specific isoforms are found in many vertebrates. This study demonstrates the AMPD1 gene product in rat is alternatively spliced. The second exon, a 12-base miniexon, was found to be excluded or included in a tissue-specific and stage-specific pattern. This example of cassette splicing utilizes a unique pathway through an RNA intermediate that generates an alternative 5' splice donor site at the point where exon 2 is ligated to exon 1. In the analogous intermediate of human AMPD1, the potential 5' splice donor site created at the boundary of exon 1 and exon 2 was a poor substrate for splicing because of differences in exon 2 sequences, and human AMPD1 was not alternatively spliced. These results demonstrate that in some cases alternative splicing may proceed through an RNA intermediate that generates an alternative splice donor site not present in the primary transcript. Discrimination between alternative 5' splice donor sites in the RNA intermediate of AMPD1 is apparently controlled by tissue-specific and stage-specific signals.


1998 ◽  
Vol 334 (1) ◽  
pp. 225-231 ◽  
Author(s):  
Geng-Sheng YU ◽  
Yi-Chun LU ◽  
Tod GULICK

Carnitine palmitoyltransferase I (CPT-I) catalyses the rate-determining step in mitochondrial fatty acid β-oxidation. The enzyme has two cognate structural genes that are preferentially expressed in liver (α) or fat and muscle (β). We hypothesized the existence of additional isoforms in heart to account for unique kinetic characteristics of enzyme activity in this tissue. Hybridization and PCR screening of a human cardiac cDNA library revealed the expression of two novel CPT-I isoforms generated by alternative splicing of the CPT-Iβ transcript, in addition to the β and α cDNA species previously described. Ribonuclease protection and reverse transcriptase-mediated PCR assays confirmed the presence of mRNA species of each splicing variant in heart, skeletal muscle and liver, with differing relative concentrations in the tissues. The novel splicing variants omit exons or utilize a cryptic splice donor site within an exon. Deduced polypeptide sequences of the novel enzymes include omissions in the region of putative membrane-spanning and malonyl-CoA regulatory domains compared with the previously described CPT-Is, implying that the encoded enzymes will exhibit unique features with respect to outer mitochondrial membrane topology and response to physiological and pharmacological inhibitors.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1189-1189
Author(s):  
Joellen H. H. Lin ◽  
Mathieu Garand ◽  
Branislava Zagorac ◽  
Anastassia Filipieva ◽  
Marlys L Koschinsky ◽  
...  

Abstract Abstract 1189 Thrombin-activatable fibrinolysis inhibitor (TAFI) is a basic carboxypeptidase zymogen that plays important roles in modulation of fibrinolysis and inflammation. Activated TAFI (TAFIa) removes carboxyl-terminal lysine and/or arginine residues from substrates such as partially-degraded fibrin, cell-surface plasminogen receptors, bradykinin, the anaphylatoxins C3a and C5a, and thrombin-cleaved osteopontin. The plasma pool of TAFI arises from expression of its gene (CPB2) in the liver. However, CPB2 is expressed in other locations including platelets (arising from expression in megakaryocytes), monocytes, and macrophages. An additional source of CPB2 expression has been shown to be the hippocampus; this TAFI variant was reported to be expressed from a CPB2 mRNA in which (i) exon 7 had been skipped resulting in an in-frame loss of 37 codons and (ii) alternative splicing had occurred in exon 11 resulting in a frameshift that deletes the final 42 codons and introduces a novel 16-amino acid carboxyl-terminus. Most recently, skipping of exon 7 has been reported in HepG2 (human hepatocellular carcinoma) cells, a phenomenon that appears to play a role in balancing selection at the CPB2 locus in the human population. As much as 12.5% of the CPB2 transcript in HepG2 cells was reported to lack exon 7. Accordingly, we have characterized, using RT-PCR, molecular cloning, and quantitative RT-PCR, the splicing patterns of CPB2 mRNA in a variety of cell types. We examined RNA isolated from human liver, HepG2 cells, the megakaryocytoid cell line Dami, platelets, the monocytoid cell line THP-1, and human cerebral cortex and cerebellum. We found evidence for alternative splicing/exon skipping in all cell types tested. All cells contained CPB2 mRNA lacking exon 7. Only platelets, cortex, and cerebellum CPB2 mRNA featured alternatively spliced exon 11, and all cDNA clones identified that contained exon 11 alternative splicing also lacked exon 7. Quantitative analysis of the proportion of total CPB2 transcripts that lack exon 7 showed that HepG2 cells had almost 10% exon 7-less transcripts but all other cell types tested had far lower proportions, ranging from 1% (Dami cells, peripheral blood mononuclear cells and cerebellum) to less than 0.1% (liver, THP-1 cells, platelets). Studies of CPB2 expressed in the hippocampus suggested that the variant lacking exon 7 and featuring alternative splicing in exon 11 encodes a protein that is localized in the endoplasmic reticulum of neural cells and that possesses endopeptidase activity against amyloid precursor protein. To test the functional properties of the TAFI proteins encoded by the TAFI variants, we transfected baby hamster kidney cells with expression plasmids encoding variants lacking exon 7, alternatively spliced exon 11, or both variations. Interestingly, unlike wild-type recombinant TAFI in these cells, the variant proteins could not be secreted, despite the presence of an intact signal peptide in each. Western blot analyses of transfected cell lysates revealed immunoreactive bands between 40 and 45 kDa, consistent with hypoglycosylated TAFI; lysates of cells expressing wild-type TAFI contained a 45 kDa species and a 60 kDa mature preproprotein. We therefore propose that the variant proteins are aberrantly folded and thus do not exit the ER. Notably, none of the variant proteins could be activated by thrombin-thrombomodulin and they did not show activity in a specific functional assay for TAFIa. Deletion of exon 7-encoded residues removes two surface α-helices and a single internal β-strand from the TAFI structure. Alternative splicing in exon 11 deletes a critical catalytic residue (Glu363). It is therefore not surprising that the variants are aberrantly folded, are not secretable, and lack TAFIa activity. It is also difficult to envisage how such a protein could acquire endopeptidase activity. We therefore speculate that variant TAFI resulting from exon skipping and alternative splicing may act as a chaperone for the presumptive peptidase that recognizes amyloid precursor protein. Moreover, full-length TAFI is expressed in the brain and may regulate brain-expressed tPA and plasminogen to influence neural function. Finally, it is possible that, under certain circumstances, the extent of exon skipping/alternative splicing is sufficient to impact the secretion of functional TAFI from liver or other cell types. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3792-3792
Author(s):  
Hrishikesh Mehta ◽  
Hideki Maskishima ◽  
Muneyoshji Futami ◽  
Wei-Ming Kao ◽  
Bartlomiej P Przychodzen ◽  
...  

Abstract Abstract 3792 Myelodysplastic Syndromes (MDS) are a group of bone marrow disorders closely related to acute myeloid leukemia (AML). Even though a number of genetic mutations have been recently identified in patients with MDS, their contributions to MDS pathogenesis remains poorly understood. Some of these genetic mutations involve transcription factors, but they are also found in AML: TET2, EZH2, and ASXL1. One group of mutations distinct to MDS are those encoding proteins involved in RNA splicing (e.g. U2AF1/U2AF35, ZRSR2, SRSF2, SF3B1). Based on RNA-Seq of MDS/AML patients, we report exon skipping in the 3′ end of the CSF3R transcript, which encodes the granulocyte colony-stimulating factor receptor (GCSFR), in a patient carrying the S34F mutation in the U2AF1 gene. U2AF1 is one of the more recurrent genes affected by mutation in MDS, and it is associated with progression to secondary AML. The S34F mutation in U2AF1 is a gain of function mutation that promotes excess splicing and exon skipping. Alternative splicing of CSF3R results in 7 transcripts, of which the two most common are Class I and Class IV. There are putative splicing sequences within exon 17 of the CSF3R locus; GT (GU) at the 5′ site and AG at the 3′ site - a recognition sequence for U2AF1. In addition, we also identified mutations affecting CSF3R in two patients with chronic myelomonocytic leukemia (GCSFR T595I or Q726X), one patient with Refractory Cytopenias with Multilineage Dysplasia and Ring Sideroblasts (GCSFR W650L), and one patient with primary AML (GCSFR G659fs). In the last case, this mutation affects the Class III transcript of CSF3R, an alternatively spliced form expressed highly in the placenta. The Class IV isoform lacks much of the C-terminal domain, similar to the protein produced by nonsense mutations found in patients with severe congenital neutropenia who develop MDS/AML or the patient we identified. Little is known about the signaling-phenotype relationship of a mutant or alternatively-spliced GCSFR. To address these questions, we first studied the expression patterns of Class I and Class IV GCSFR in the human NB4 promyelocytic leukemia cell line and primary human hematopoietic stem (CD34+) cells induced to differentiate into neutrophils. Quantitative PCR of Class I and Class IV transcripts showed a positive feedback loop for Class I. Expression of the Class IV transcript was downregulated during hematopoietic cell differentiation. Scatchard analysis showed no differences between the two receptors in high-affinity Kd (∼ 500 nM) for the GCSF-GCSFR. Because Class IV lacks the C-terminal di-leucyl motif that facilitates internalization, we measured internalization rates and found that indeed the Class IV internalized more slowly and less completely. Using an MTT assay to measure proliferation we observed Class IV isoform had lower proliferative capacity at lower GCSF concentrations (0.1 – 2 nM GCSF); however at higher GCSF dose (>100 nM) its proliferative response was greater than Class I. Using western blotting we observed that the Class IV isoform showed weaker signaling via the JAK/STAT and ERK1/2 pathways, but had higher Lyn activity when treated with 100 ng/ml GCSF. To determine effects on differentiation, we made chimeric human growth hormone receptor-GCSFR for transfection into murine 32D cells. 32D cells express low levels of murine GCSFR, thus we made the chimeric receptor. Expression of Class IV Receptor impaired their differentiation (as demonstrated by morphology and Gr-1 expression). We are now developing a mouse model of perturbed hematopoiesis due to dysregulated expression of Class IV GCSFR. Altogether, our studies show that S34F mutation of U2AF1 splicing gene is associated with exon skipping of CSF3R. This would result in expression of a C-terminal truncated GCSFR, similar to that observed in patients with nonsense mutations or alternative splicing. A C-terminal truncated GCSFR causes aberrant hematopoietic cell proliferation, altered post-receptor signaling events, and impaired myeloid differentiation. Our findings and those involving GCSFR E785K in high-risk MDS (Wolfler et al, Blood 105:3731, 2005) strongly suggest that aberrant signaling by alterations in the C-terminus of the GCSFR contributes to the pathogenesis of MDS. Disclosures: Maciejewski: NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.


2000 ◽  
Vol 348 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Brian D. LICHTY ◽  
Suzanne KAMEL-REID

The BCR/ABL fusion gene is pathognomonic for chronic myelogenous leukaemia (CML). We have previously reported alternative splicing of BCR/ABL, as indicated by the detection of both p190- and p210-encoding transcripts, in about 60% of CML patient samples. These exon-skipping events involved the joining of ABL exon 2 to variable upstream BCR exons. Similarly, ABL exon 2 is alternatively spliced to either of two upstream ABL exons (1a or 1b) in c-ABL. We have constructed BCR and BCR/ABL minigenes to study this phenomenon in more detail. These constructs were transfected into various cell types and splicing was assessed by reverse transcriptase PCR. Whereas the basic BCR minigene expressed exon-inclusive transcripts only, insertion of genomic DNA spanning ABL exon 2 induced exon-skipping but only when expressed in the CML cell lines K562 and EM3. In this study we localized the required sequence element to ABL exon 2 itself. These results mimic the splicing phenotype displayed by most CML patients. We propose a model where a trans-factor present in some CML cells interacts with ABL exon 2 pre-mRNA to promote skipping of upstream BCR exons.


Sign in / Sign up

Export Citation Format

Share Document