Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity

2005 ◽  
Vol 22 (3) ◽  
pp. 368-381 ◽  
Author(s):  
Andrea De Biase ◽  
Susan M. Knoblach ◽  
Simone Di Giovanni ◽  
Chenguang Fan ◽  
Annamaria Molon ◽  
...  

Changes in gene expression contribute to pathophysiological alterations following spinal cord injury (SCI). We examined gene expression over time (4 h, 24 h, 7 days) at the impact site, as well as rostral and caudal regions, following mild, moderate, or severe contusion SCI in rats. High-density oligonucleotide microarrays were used that included ∼27,000 genes/ESTs (Affymetrix RG-U34; A, B and C arrays), together with multiple analyses (MAS 5.0, dChip). Alterations after mild injury were relatively rapid (4 and 24 h), whereas they were delayed and prolonged after severe injury (24 h and 7 days). The number and magnitude of gene expression changes were greatest at the injury site after moderate injury and increased in rostral and caudal regions as a function of injury severity. Sham surgery resulted in expression changes that were similar to mild injury, suggesting the importance of using time-linked surgical controls as well as naive animals for these kinds of studies. Expression of many genes and ESTs was altered; these were classified functionally based on ontology. Overall representation of these functional classes varied with distance from the site of injury and injury severity, as did the individual genes that contributed to each functional class. Different clustering approaches were used to identify changes in neuronal-specific genes and several transcription factors that have not previously been associated with SCI. This study represents the most comprehensive evaluation of gene expression changes after SCI to date. The results underscore the power of microarray approaches to reveal global genomic responses as well as changes in particular gene clusters and/or families that may be important in the secondary injury cascade.

2011 ◽  
Vol 110 (5) ◽  
pp. 1204-1210 ◽  
Author(s):  
Yun Chau Long ◽  
Emil Kostovski ◽  
Hanneke Boon ◽  
Nils Hjeltnes ◽  
Anna Krook ◽  
...  

Skeletal muscle plays an important role in the regulation of energy homeostasis; therefore, the ability of skeletal muscle to adapt and alter metabolic gene expression in response to changes in physiological demands is critical for energy balance. Individuals with cervical spinal cord lesions are characterized by tetraplegia, impaired thermoregulation, and altered skeletal muscle morphology. We characterized skeletal muscle metabolic gene expression patterns, as well as protein content, in these individuals to assess the impact of spinal cord injury on critical determinants of skeletal muscle metabolism. Our results demonstrate that mRNA levels and protein expression of skeletal muscle genes essential for glucose storage are reduced, whereas expression of glycolytic genes is reciprocally increased in individuals with spinal cord injury. Furthermore, expression of genes essential for lipid oxidation is coordinately reduced in spinal cord injured subjects, consistent with a marked reduction of mitochondrial proteins. Thus spinal cord injury resulted in a profound and tightly coordinated change in skeletal muscle metabolic gene expression program that is associated with the aberrant metabolic features of the tissue.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 233-LB
Author(s):  
XIN-HUA LIU ◽  
LAUREN HARLOW ◽  
ZACHARY GRAHAM ◽  
JOSHUA F. YARROW ◽  
KENNETH CUSI ◽  
...  

Inflammation ◽  
2021 ◽  
Author(s):  
Shangrila Parvin ◽  
Clintoria R. Williams ◽  
Simone A. Jarrett ◽  
Sandra M. Garraway

Abstract— Accumulating evidence supports that spinal cord injury (SCI) produces robust inflammatory plasticity. We previously showed that the pro-inflammatory cytokine tumor necrosis factor (TNF)α is increased in the spinal cord after SCI. SCI also induces a systemic inflammatory response that can impact peripheral organ functions. The kidney plays an important role in maintaining cardiovascular health. However, SCI-induced inflammatory response in the kidney and the subsequent effect on renal function have not been well characterized. This study investigated the impact of high and low thoracic (T) SCI on C-fos, TNFα, interleukin (IL)-1β, and IL-6 expression in the kidney at acute and sub-chronic timepoints. Adult C57BL/6 mice received a moderate contusion SCI or sham procedures at T4 or T10. Uninjured mice served as naïve controls. mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNFα, and C-fos, and TNFα and C-fos protein expression were assessed in the kidney and spinal cord 1 day and 14 days post-injury. The mRNA levels of all targets were robustly increased in the kidney and spinal cord, 1 day after both injuries. Whereas IL-6 and TNFα remained elevated in the spinal cord at 14 days after SCI, C-fos, IL-6, and TNFα levels were sustained in the kidney only after T10 SCI. TNFα protein was significantly upregulated in the kidney 1 day after both T4 and T10 SCI. Overall, these results clearly demonstrate that SCI induces robust systemic inflammation that extends to the kidney. Hence, the presence of renal inflammation can substantially impact renal pathophysiology and function after SCI.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Erin M. Triplet ◽  
Isobel A. Scarisbrick

Abstract Study design We completed retrospective analysis of statin use in individuals with neurologically significant spinal cord injury in a historical cohort study. Objective Our objective was to establish the prevalence of cholesterol-lowering agent use following spinal cord injury (SCI) and to determine the impact on recovery of motor function. Setting Patients enrolled in the Rochester Epidemiology Project in Olmsted County, Minnesota, USA from 2005 to 2018 were included in analysis. Methods Exclusion criteria: age <18, comorbid neurological disease, prior neurological deficit, nontraumatic injury, survival <1 year, or lack of motor deficit. Demographics and cholesterol-lowering agent use in 83 individuals meeting all criteria were recorded. A total of 68/83 individuals were then assessed for change in function over the first 2 months after injury using the ISNCSCI motor subscore. Statistical comparison between control and statin groups was done by two-sided Chi-squared test or two-tailed Student’s t test. Generalized regression was performed to assess associations between independent variables and functional outcome. Results 30% of individuals with SCI had a prescription for a cholesterol-lowering agent. No significant differences were observed in severity of injury or demographic composition between groups. The change in motor subscore was reduced in the statin group compared to controls (p = 0.03, Mann–Whitney). Both severity of injury and statin were significant predictors of reduced motor recovery (p = 0.001, and p = 0.04, respectively). Conclusions Both severity of SCI and statins were significant predictors of reduced motor recovery. Additional investigation is needed to address potential impact of statin-therapy in the context of CNS injury and repair.


Sign in / Sign up

Export Citation Format

Share Document