scholarly journals Mechanisms of allelic and clinical heterogeneity of lamin A/C phenotypes

2018 ◽  
Vol 50 (9) ◽  
pp. 694-704 ◽  
Author(s):  
Jelena Perovanovic ◽  
Eric P. Hoffman

Mutations in the lamin A/C ( LMNA) gene cause a broad range of clinical syndromes that show tissue-restricted abnormalities of post mitotic tissues, such as muscle, nerve, heart, and adipose tissue. Mutations in other nuclear envelope proteins cause clinically overlapping disorders. The majority of mutations are dominant single amino acid changes (toxic protein produced by the single mutant gene), and patients are heterozygous with both normal and abnormal proteins. Experimental support has been provided for different models of cellular pathogenesis in nuclear envelope diseases, including changes in heterochromatin formation at the nuclear membrane (epigenomics), changes in the timing of steps during terminal differentiation of cells, and structural abnormalities of the nuclear membrane. These models are not mutually exclusive and may be important in different cells at different times of development. Recent experiments using fusion proteins of normal and mutant lamin A/C proteins fused to a bacterial adenine methyltransferase (DamID) provided compelling evidence of mutation-specific perturbation of epigenomic imprinting during terminal differentiation. These gain-of-function properties include lineage-specific ineffective genomic silencing during exit from the cell cycle (heterochromatinization), as well as promiscuous initiation of silencing at incorrect places in the genome. To date, these findings have been limited to a few muscular dystrophy and lipodystrophy LMNA mutations but seem shared with a distinct nuclear envelope disease, emerin-deficient muscular dystrophy. The dominant-negative structural model and gain-of-function epigenomic models for distinct LMNA mutations are not mutually exclusive, and it is likely that both models contribute to aspects of the many complex clinical phenotypes observed.

2002 ◽  
Vol 115 (2) ◽  
pp. 341-354 ◽  
Author(s):  
Elizabeth A. L. Fairley ◽  
Andrew Riddell ◽  
Juliet A. Ellis ◽  
John Kendrick-Jones

Emerin is the nuclear membrane protein defective in X-linked Emery-Dreifuss muscular dystrophy (X-EDMD). The majority of X-EDMD patients have no detectable emerin. However, there are cases that produce mutant forms of emerin, which can be used to study its function. Our previous studies have shown that the emerin mutants S54F, P183T, P183H, Del95-99, Del236-241 (identified in X-EDMD patients) are targeted to the nuclear membrane but to a lesser extent than wild-type emerin. In this paper, we have studied how the mislocalisation of these mutant emerins may affect nuclear functions associated with the cell cycle using flow cytometry and immunofluorescence microscopy. We have established that cells expressing the emerin mutant Del236-241 (a deletion in the transmembrane domain), which was mainly localised in the cytoplasm, exhibited an aberrant cell cycle length. Thereafter, by examining the intracellular localisation of endogenously expressed lamin A/C and exogenously expressed wild-type and mutant forms of emerin after a number of cell divisions, we determined that the mutant forms of emerin redistributed endogenous lamin A/C. The extent of lamin A/C redistribution correlated with the amount of EGFP-emerin that was mislocalised. The amount of EGFP-emerin mislocalized, in turn, was associated with alterations in the nuclear envelope morphology. The nuclear morphology and redistribution of lamin A/C was most severely affected in the cells expressing the emerin mutant Del236-241.It is believed that emerin is part of a novel nuclear protein complex consisting of the barrier-to-autointegration factor (BAF), the nuclear lamina, nuclear actin and other associated proteins. The data presented here show that lamin A/C localisation is dominantly directed by its interaction with certain emerin mutants and perhaps wild-type emerin as well. These results suggest that emerin links A-type lamins to the nuclear envelope and that the correct localisation of these nuclear proteins is important for maintaining cell cycle timing.


2005 ◽  
Vol 16 (7) ◽  
pp. 3411-3424 ◽  
Author(s):  
Thorsten Libotte ◽  
Hafida Zaim ◽  
Sabu Abraham ◽  
V. C. Padmakumar ◽  
Maria Schneider ◽  
...  

The vertebrate proteins Nesprin-1 and Nesprin-2 (also referred to as Enaptin and NUANCE) together with ANC-1 of Caenorhabditis elegans and MSP-300 of Drosophila melanogaster belong to a novel family of α-actinin type actin-binding proteins residing at the nuclear membrane. Using biochemical techniques, we demonstrate that Nesprin-2 binds directly to emerin and the C-terminal common region of lamin A/C. Selective disruption of the lamin A/C network in COS7 cells, using a dominant negative lamin B mutant, resulted in the redistribution of Nesprin-2. Furthermore, using lamin A/C knockout fibroblasts we show that lamin A/C is necessary for the nuclear envelope localization of Nesprin-2. In normal skin where lamin A/C is differentially expressed, strong Nesprin-2 expression was found in all epidermal layers, including the basal layer where only lamin C is present. This indicates that lamin C is sufficient for proper Nesprin-2 localization at the nuclear envelope. Expression of dominant negative Nesprin-2 constructs and knockdown studies in COS7 cells revealed that the presence of Nesprin-2 at the nuclear envelope is necessary for the proper localization of emerin. Our data imply a scaffolding function of Nesprin-2 at the nuclear membrane and suggest a potential involvement of this multi-isomeric protein in human disease.


2002 ◽  
Vol 115 (1) ◽  
pp. 61-70 ◽  
Author(s):  
John M. K. Mislow ◽  
Marian S. Kim ◽  
Dawn Belt Davis ◽  
Elizabeth M. McNally

Mutations in the genes encoding the inner nuclear membrane proteins lamin A/C and emerin produce cardiomyopathy and muscular dystrophy in humans and mice. The mechanism by which these broadly expressed gene products result in tissue-specific dysfunction is not known. We have identified a protein of the inner nuclear membrane that is highly expressed in striated and smooth muscle. This protein, myne-1 (myocyte nuclear envelope), is predicted to have seven spectrin repeats, an interrupted LEM domain and a single transmembrane domain at its C-terminus. We found that myne-1 is expressed upon early muscle differentiation in multiple intranuclear foci concomitant with lamin A/C expression. In mature muscle, myne-1 and lamin A/C are perfectly colocalized, although colocalization with emerin is only partial. Moreover, we show that myne-1 and lamin A/C coimmunoprecipitate from differentiated muscle in vitro. The muscle-specific inner nuclear envelope expression of myne-1, along with its interaction with lamin A/C, indicates that this gene is a potential mediator of cardiomyopathy and muscular dystrophy.


2021 ◽  
Vol 22 (13) ◽  
pp. 6669
Author(s):  
Byongsun Lee ◽  
Seungjae Lee ◽  
Younggwang Lee ◽  
Yongjin Park ◽  
Jaekyung Shim

Emerin is the inner nuclear membrane protein involved in maintaining the mechanical integrity of the nuclear membrane. Mutations in EMD encoding emerin cause Emery-Dreifuss muscular dystrophy (EDMD). There has been accumulating evidence that emerin regulation of specific gene expression is associated with this disease, but the exact function of emerin has still less revealing. Here, we have shown that emerin downregulates signal transducers and activators of transcription 3 (STAT3) signaling, activated exclusively by Janus-kinase (JAK). Deletion mutation experiments showed that the lamin-binding domain of emerin is essential for the inhibition of STAT3 signaling. Emerin interacted directly and co-localized with STAT3 in the nuclear membrane. Emerin knockdown induced STAT3 target genes Bcl2 and Survivin to increase cell survival signals and suppress hydrogen peroxide-induced cell death in HeLa cells. Specifically, downregulation of BAF or lamin A/C increases STAT3 signaling, suggesting that correct-localized emerin by assembling with BAF and lamin A/C acts as an intrinsic inhibitor against STAT3 signaling. In C2C12 cells, emerin knockdown induced STAT3 target gene, Pax7, and activated abnormal myoblast proliferation associated with muscle wasting in skeletal muscle homeostasis. Our results indicate that emerin downregulates STAT3 signaling by inducing retention of STAT3 and delaying STAT3 signaling in the nuclear membrane. This mechanism provides clues to the etiology of emerin-related muscular dystrophy and could be a new therapeutic target for treatment.


2004 ◽  
Vol 30 (4) ◽  
pp. 444-450 ◽  
Author(s):  
A. Muchir ◽  
J. Medioni ◽  
M. Laluc ◽  
C. Massart ◽  
T. Arimura ◽  
...  

2014 ◽  
Vol 204 (7) ◽  
pp. 1099-1109 ◽  
Author(s):  
Yagmur Turgay ◽  
Lysie Champion ◽  
Csaba Balazs ◽  
Michael Held ◽  
Alberto Toso ◽  
...  

SUN proteins reside in the inner nuclear membrane and form complexes with KASH proteins of the outer nuclear membrane that connect the nuclear envelope (NE) to the cytoskeleton. These complexes have well-established functions in nuclear anchorage and migration in interphase, but little is known about their involvement in mitotic processes. Our analysis demonstrates that simultaneous depletion of human SUN1 and SUN2 delayed removal of membranes from chromatin during NE breakdown (NEBD) and impaired the formation of prophase NE invaginations (PNEIs), similar to microtubule depolymerization or down-regulation of the dynein cofactors NudE/EL. In addition, overexpression of dominant-negative SUN and KASH constructs reduced the occurrence of PNEI, indicating a requirement for functional SUN–KASH complexes in NE remodeling. Codepletion of SUN1/2 slowed cell proliferation and resulted in an accumulation of morphologically defective and disoriented mitotic spindles. Quantification of mitotic timing revealed a delay between NEBD and chromatin separation, indicating a role of SUN proteins in bipolar spindle assembly and mitotic progression.


2021 ◽  
Vol 22 (23) ◽  
pp. 13034
Author(s):  
Søren Pfitzner ◽  
Jens B. Bosse ◽  
Helga Hofmann-Sieber ◽  
Felix Flomm ◽  
Rudolph Reimer ◽  
...  

The human adenovirus type 5 (HAdV5) infects epithelial cells of the upper and lower respiratory tract. The virus causes lysis of infected cells and thus enables spread of progeny virions to neighboring cells for the next round of infection. The mechanism of adenovirus virion egress across the nuclear barrier is not known. The human adenovirus death protein (ADP) facilitates the release of virions from infected cells and has been hypothesized to cause membrane damage. Here, we set out to answer whether ADP does indeed increase nuclear membrane damage. We analyzed the nuclear envelope morphology using a combination of fluorescence and state-of-the-art electron microscopy techniques, including serial block-face scanning electron microscopy and electron cryo-tomography of focused ion beam-milled cells. We report multiple destabilization phenotypes of the nuclear envelope in HAdV5 infection. These include reduction of lamin A/C at the nuclear envelope, large-scale membrane invaginations, alterations in double membrane separation distance and small-scale membrane protrusions. Additionally, we measured increased nuclear membrane permeability and detected nuclear envelope lesions under cryoconditions. Unexpectedly, and in contrast to previous hypotheses, ADP did not have an effect on lamin A/C reduction or nuclear permeability.


2012 ◽  
Vol 196 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Xiao Zhou ◽  
Katja Graumann ◽  
David E. Evans ◽  
Iris Meier

Inner nuclear membrane Sad1/UNC-84 (SUN) proteins interact with outer nuclear membrane (ONM) Klarsicht/ANC-1/Syne homology (KASH) proteins, forming linkers of nucleoskeleton to cytoskeleton conserved from yeast to human and involved in positioning of nuclei and chromosomes. Defects in SUN–KASH bridges are linked to muscular dystrophy, progeria, and cancer. SUN proteins were recently identified in plants, but their ONM KASH partners are unknown. Arabidopsis WPP domain–interacting proteins (AtWIPs) are plant-specific ONM proteins that redundantly anchor Arabidopsis RanGTPase–activating protein 1 (AtRanGAP1) to the nuclear envelope (NE). In this paper, we report that AtWIPs are plant-specific KASH proteins interacting with Arabidopsis SUN proteins (AtSUNs). The interaction is required for both AtWIP1 and AtRanGAP1 NE localization. AtWIPs and AtSUNs are necessary for maintaining the elongated nuclear shape of Arabidopsis epidermal cells. Together, our data identify the first KASH members in the plant kingdom and provide a novel function of SUN–KASH complexes, suggesting that a functionally diverged SUN–KASH bridge is conserved beyond the opisthokonts.


1999 ◽  
Vol 147 (5) ◽  
pp. 913-920 ◽  
Author(s):  
Teresa Sullivan ◽  
Diana Escalante-Alcalde ◽  
Harshida Bhatt ◽  
Miriam Anver ◽  
Narayan Bhat ◽  
...  

The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.


2017 ◽  
Vol 6 (1) ◽  
pp. 14-18
Author(s):  
Elise Alexandra Kikis ◽  
Megan Elizabeth Mastey

Emery-Dreifuss Muscular Dystrophy (EDMD) is a type of muscular dystrophy characterized by contractures, or shortening of muscles or joints in the elbows and Achilles tendons, muscle wasting and weakness as well as cardiomyopathy. There are two main forms of inherited EDMD, X-linked recessive and autosomal dominant. There is also a rarer form of autosomal recessive inheritance with only a few cases ever reported. The X-linked form of EDMD is caused by mutation of the STA gene that encodes the protein emerin, while the autosomal dominant form is caused by a missense mutation on the LMNA gene, which encodes lamin A/C proteins. Both emerin and lamin A/C are nuclear envelope proteins that interact with other proteins to create a connective network that attaches the nuclear lamina to the cytoskeleton. These nuclear envelope proteins interact via accessory proteins to chromatin and also thereby stimulate gene expression. The exact mechanism of how mutations in these genes lead to muscular dystrophy is not well understood. The “structural hypothesis,” states that the absence of these envelope proteins result in a weakened cell and would eventually end in nuclear disruption. The “gene regulatory hypothesis” states that emerin and lamin may be transcription factors whose absence results in tissue-specific effects. This review will addresses these hypotheses, describes what is known about the cell and molecular biology underlying EDMD and considers recent as advances in therapeutics.


Sign in / Sign up

Export Citation Format

Share Document