Sarcoplasmic Reticulum Function in Smooth Muscle

2010 ◽  
Vol 90 (1) ◽  
pp. 113-178 ◽  
Author(s):  
Susan Wray ◽  
Theodor Burdyga

The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a “one model fits all” approach to this subject, we have tried to synthesize conclusions wherever possible.

A tubular system of sarcoplasmic reticulum that is not penetrated by extracellular markers is described in vertebrate smooth muscles. The sarcoplasmic reticulum forms fenestrations around the surface vesicles and also forms close appositions (an approximately 10 to 12 nm gap traversed by periodic electron dense material) with the non-specialized surface membrane. The morphological couplings are considered to be the most probable sites of electromechanical coupling of the action potential to the twitch contraction. The relative volume of the sarcoplasmic reticulum varies in functionally different (tonic and phasic) smooth muscles, and correlates with the ability of the different smooth muscles to contract in the absence of extracellular calcium. Electron opaque deposits of strontium are accumulated by peripheral and central elements of the sarcoplasmic reticulum. The accumulation of strontium and barium by mitochondria raises the possibility that, in addition to the sarcoplasmic reticulum, mitochondria may play a role in the regulation of intracellular divalent cation levels in vertebrate smooth muscle.


2003 ◽  
Vol 160 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Paola Bagnato ◽  
Virigina Barone ◽  
Emiliana Giacomello ◽  
Daniela Rossi ◽  
Vincenzo Sorrentino

Assembly of specialized membrane domains, both of the plasma membrane and of the ER, is necessary for the physiological activity of striated muscle cells. The mechanisms that mediate the structural organization of the sarcoplasmic reticulum with respect to the myofibrils are, however, not known. We report here that ank1.5, a small splice variant of the ank1 gene localized on the sarcoplasmic reticulum membrane, is capable of interacting with a sequence of 25 aa located at the COOH terminus of obscurin. Obscurin is a giant sarcomeric protein of ∼800 kD that binds to titin and has been proposed to mediate interactions between myofibrils and other cellular structures. The binding sites and the critical aa required in the interaction between ank1.5 and obscurin were characterized using the yeast two-hybrid system, in in vitro pull-down assays and in experiments in heterologous cells. In differentiated skeletal muscle cells, a transfected myc-tagged ank1.5 was found to be selectively restricted near the M line region where it colocalized with endogenous obscurin. The M line localization of ank1.5 required a functional obscurin-binding site, because mutations of this domain resulted in a diffused distribution of the mutant ank1.5 protein in skeletal muscle cells. The interaction between ank1.5 and obscurin represents the first direct evidence of two proteins that may provide a direct link between the sarcoplasmic reticulum and myofibrils. In keeping with the proposed role of obscurin in mediating an interaction with ankyrins and sarcoplasmic reticulum, we have also found that a sequence with homology to the obscurin-binding site of ank1.5 is present in the ank2.2 isoform, which in striated muscles has been also shown to associate with the sarcoplasmic reticulum. Accordingly, a peptide containing the COOH terminus of ank2.2 fused with GST was found to bind to obscurin. Based on reported evidence showing that the COOH terminus of ank2.2 is necessary for the localization of ryanodine receptors and InsP3 receptors in the sarcoplasmic reticulum, we propose that obscurin, through multiple interactions with ank1.5 and ank2.2 isoforms, may assemble a large protein complex that, in addition to a structural function, may play a role in the organization of specific subdomains in the sarcoplasmic reticulum.


2014 ◽  
Vol 306 (11) ◽  
pp. H1512-H1524 ◽  
Author(s):  
Sebastien Hayoz ◽  
Vanessa Bradley ◽  
Erika M. Boerman ◽  
Zahra Nourian ◽  
Steven S. Segal ◽  
...  

Large conductance Ca2+-activated K+ channels (BKCa) contribute to negative feedback regulation of smooth muscle cell (SMC) tone. However, the effects of aging on BKCa function are unclear. We tested the hypothesis that aging alters SMC BKCa function in superior epigastric arteries (SEAs) by using perforated patch recording of enzymatically isolated SMCs from 3- to 4-mo-old male C57BL/6 mice (Young) and 24- to 26-mo-old male C57BL/6 mice (Old). SMC capacitance from Young (15.7 ± 0.4 pF; n = 110) was less than Old (17.9 ± 0.5 pF; n = 104) ( P < 0.05). SMCs displayed spontaneous transient outward currents (STOCs) at membrane potentials more positive than −30 mV; depolarization increased STOC amplitude and frequency ( P < 0.05; n = 19–24). STOC frequency in Young (2.2 ± 0.6 Hz) was less than Old (4.2 ± 0.7 Hz) at −10 mV ( P < 0.05, n = 27–30), with no difference in amplitude (1.0 ± 0.1 vs. 0.9 ± 0.1 pA/pF, respectively). At +30 mV, STOC amplitude in Young (3.2 ± 0.3 pA/pF) was less than Old (5.0 ± 0.5 pA/pF; P < 0.05, n = 61–67) with no difference in frequency (3.9 ± 0.4 vs. 3.2 ± 0.3 Hz, respectively). BKCa blockers (1 μM paxilline, 100 nM iberiotoxin, 1 mM tetraethylammonium) or a ryanodine receptor antagonist (100 μM tetracaine) inhibited STOCs (n ≥ 6; P < 0.05 each). Western blots revealed increased expression of BKCa α-subunit protein in Old. Pressure myography revealed no effect of age on SEA maximal diameter, myogenic tone, or paxilline-induced constriction ( n = 10–12; P > 0.05). Enhanced functional expression of SMC BKCa-dependent STOCs in Old may represent an adaptation of resistance arteries to maintain functional integrity.


2015 ◽  
Vol 112 (42) ◽  
pp. E5660-E5668 ◽  
Author(s):  
Guidenn Sulbarán ◽  
Lorenzo Alamo ◽  
Antonio Pinto ◽  
Gustavo Márquez ◽  
Franklin Méndez ◽  
...  

Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components.


2001 ◽  
Vol 79 (1) ◽  
pp. 34-42
Author(s):  
A Molleman ◽  
L WC Liu ◽  
J D Huizinga

Muscarinic receptor mediated membrane currents and contractions were studied in isolated canine colon circular smooth muscle cells. Carbachol (10–5M) evoked a slow transient inward current that was superimposed by a transient outward current at holding potentials greater than –50 mV. Carbachol contracted the cells by 70 ± 2%. The effects of carbachol were blocked by atropine (10–6M), tetraethyl ammonium (20 mM), and BAPTA-AM (25 mM applied for 20 min). The inward current and contraction were not sensitive to diltiazem (10–5M), nitrendipine (3 × 10–7M), niflumic acid (10–5M), or N-phenylanthranilic acid (10–4M), but were gradually inhibited after repetitive stimulations in Ca2+free solution. Ni2+(2 mM) inhibited the inward current by 67 ± 4%. The inward current reversed at +15 mV. The outward component could be selectively inhibited by iberiotoxin (20 nM) or by intracellular Cs+. Repeated stimulation in the presence of cyclopiazonic acid (CPA, 3 µM) inhibited the carbachol-induced outward current and partially inhibited contraction. CPA did not inhibit the inward current. In conclusion, muscarinic receptor stimulation evoked a CPA-sensitive calcium release that caused contraction and a CPA-insensitive transient inward current was activated that is primarily carried by Ca2+ions and is sensitive to Ni2+.Key words: calcium, carbachol, smooth muscle, cyclopiazonic acid, sarcoplasmic reticulum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoru Muro ◽  
Janyaruk Suriyut ◽  
Keiichi Akita

AbstractThis study presents the detailed anatomy of the Cowper’s gland in humans. Elucidating the mechanism of secretion and emission of the Cowper’s gland requires analysis of the muscles around the Cowper’s gland. We hypothesized that the Cowper’s gland involves not only smooth muscle but also the striated muscles of the pelvic floor. Here, we provide comprehensive and three-dimensional anatomy of the Cowper’s gland and its surrounding structures, which overcomes the current local and planar understanding. In this study, seven male corpses of body donors were used to conduct macroscopic anatomy, histology, and three-dimensional reconstruction. The Cowper’s gland was surrounded laterally and posterosuperiorly by striated and smooth muscles, respectively. The striated muscle bundle was connected from the superficial transverse perineal muscle, levator ani, and external anal sphincter to the external urethral sphincter (rhabdosphincter). The smooth muscle was part of the deep transverse perineal muscle and entered between the bilateral Cowper’s glands and lobules. Our findings indicate that the secretion and emission of the Cowper’s gland in humans are carried out through the cooperation of striated and smooth muscles.


I do not think I have been given a very easy task in being asked to sum up this session, especially as I have a feeling that it was hoped that I would be able to point to some firm conclusions about the matter most in dispute, namely whether the myosin in vertebrate smooth muscles is organized into rods or ribbons. However, I think it is apparent that conflicting points of view, which cannot be resolved on present experimental evidence, are held by different workers in the field, and that no amount of reasoning or expressions of opinion will settle the question. More evidence is needed. However, I think we should not lose sight of the fact that a very large measure of agreement does exist now on several very important basic facts about the structure of smooth muscles. First, vertebrate smooth muscle contains actin filaments virtually indistinguishable from those in striated muscles, together with a very similar troponin-tropomyosin system giving calcium sensitivity to the contractile system.


1987 ◽  
Vol 252 (4) ◽  
pp. C401-C410 ◽  
Author(s):  
Y. Ohya ◽  
K. Kitamura ◽  
H. Kuriyama

The nature of transient and oscillatory outward currents (ITO and IOO) in fragmented smooth muscle cells (smooth muscle ball, SMB) from the longitudinal muscle layer of the rabbit ileum, was studied using a single electrode voltage clamp technique. With a high K+ solution containing 0.3 mM ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) in the pipette and physiological salt solution (PSS) in the bath, the Ca inward current was followed by a large transient outward current (ITO) and spontaneous oscillations of the outward current (IOO) on the sustained outward current (ISO) were elicited by a depolarizing pulse, positive to -30 mV (holding potential of -60 mV). When the internal fluid of the SMB was replaced with Cs+-tetraethylammonium+ (TEA+) solution, or when the concentration of EGTA in the pipette was increased to 4 mM, using the intracellular perfusion technique, both ITO and IOO were abolished. In Mn2+ solution both currents were also inhibited. Bath application of TEA+, procaine or A23187 completely blocked both ITO and IOO. Caffeine (0.3-1 mM) enhanced the amplitude of ITO and generations of IOO, and concentrations of caffeine over 3 mM transiently enhanced, but finally suppressed both these currents. These results suggest that the generation of ITO is closely related to the Ca2+ influx, whereas the generation of IOO may be initiated by an increment in the intracellular concentration of Ca2+, possibly released from store sites.


Sign in / Sign up

Export Citation Format

Share Document