scholarly journals Fluid Transport Across Leaky Epithelia: Central Role of the Tight Junction and Supporting Role of Aquaporins

2010 ◽  
Vol 90 (4) ◽  
pp. 1271-1290 ◽  
Author(s):  
Jorge Fischbarg

The mechanism of epithelial fluid transport remains unsolved, which is partly due to inherent experimental difficulties. However, a preparation with which our laboratory works, the corneal endothelium, is a simple leaky secretory epithelium in which we have made some experimental and theoretical headway. As we have reported, transendothelial fluid movements can be generated by electrical currents as long as there is tight junction integrity. The direction of the fluid movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Residual endothelial fluid transport persists even when no anions (hence no salt) are being transported by the tissue and is only eliminated when all local recirculating electrical currents are. Aquaporin (AQP) 1 is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability (by ∼40%) but fluid transport much less (∼20%), which militates against the presence of sizable water movements across the cell. In contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium we have developed correctly predicts experimental results only when paracellular electro-osmosis is assumed rather than transcellular local osmosis. Our evidence therefore suggests that the fluid is transported across this layer via the paracellular route by a mechanism that we attribute to electro-osmotic coupling at the junctions. From our findings we have developed a novel paradigm for this preparation that includes 1) paracellular fluid flow; 2) a crucial role for the junctions; 3) hypotonicity of the primary secretion; and 4) an AQP role in regulation rather than as a significant water pathway. These elements are remarkably similar to those proposed by the laboratory of Adrian Hill for fluid transport across other leaky epithelia.

2016 ◽  
Vol 249 (4) ◽  
pp. 469-473 ◽  
Author(s):  
J. M. Sanchez ◽  
V. Cacace ◽  
C. F. Kusnier ◽  
R. Nelson ◽  
A. A. Rubashkin ◽  
...  

1990 ◽  
Vol 258 (5) ◽  
pp. C827-C834 ◽  
Author(s):  
A. Rothstein ◽  
E. Mack

Osmotic swelling of dissociated Madin-Darby canine kidney (MDCK) cells in NaCl medium is followed by shrinking (regulatory volume decrease, or RVD) or in KCl medium by secondary swelling. The cation ionophore gramicidin has little effect on volumes of isotonic cells but accelerates volume-activated changes in either medium. Immediately after hypotonic exposure, the membrane becomes transiently hyperpolarized followed by depolarization. The depolarization phase is diminished by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Swelling is also associated with an almost immediate increase in Ca2+ influx and elevation of cytoplasmic Ca2+ ([Ca2+]i) preceding RVD. In Ca2(+)-free medium, [Ca2+]i rapidly declines to a low level. Osmotic swelling, under these circumstances, is associated with a small transient increase in [Ca2+]i, but RVD or secondary swelling (in KCl) are minimal. Under these conditions, addition of gramicidin or the Ca2(+)-ionophore A23187 induces significant volume changes, although not as large as those found in the presence of Ca2+. Quinine inhibits RVD in the absence of gramicidin, but not in its presence; oligomycin C, DIDS, and trifluoperazine, on the other hand, inhibit in the presence of the ionophore. These findings suggest that in MDCK cells RVD involves activation of distinct conductive K+ and Cl- pathways which allow escape of KCl and osmotically obligated water and that activation of both pathways is associated with elevated [Ca2+]i derived largely from volume activation of a Ca2(+)-influx pathway.


1997 ◽  
Vol 273 (2) ◽  
pp. C360-C370 ◽  
Author(s):  
J. C. Summers ◽  
L. Trais ◽  
R. Lajvardi ◽  
D. Hergan ◽  
R. Buechler ◽  
...  

To gain insight into the mechanism(s) by which cells sense volume changes, specific predictions of the macromolecular crowding theory (A. P. Minton. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994, p. 181-190. A. P. Minton, C. C. Colclasure, and J. C. Parker. Proc. Natl. Acad. Sci. USA 89: 10504-10506, 1992) were tested on the volume of internally perfused barnacle muscle cells. This preparation was chosen because it allows assessment of the effect on cell volume of changes in the intracellular macromolecular concentration and size while maintaining constant the ionic strength, membrane stretch, and osmolality. The predictions tested were that isotonic replacement of large macromolecules by smaller ones should induce volume decreases proportional to the initial macromolecular concentration and size as well as to the magnitude of the concentration reduction. The experimental results were consistent with these predictions: isotonic replacement of proteins or polymers with sucrose induced volume reductions, but this effect was only observed when the replacement was > or = 25% and the particular macromolecule had an average molecular mass of < or = 20 kDa and a concentration of at least 18 mg/ml. Volume reduction was effected by a mechanism identical with that of hypotonicity-induced regulatory volume decrease, namely, activation of verapamil-sensitive Ca2+ channels.


2003 ◽  
Vol 284 (4) ◽  
pp. F812-F828 ◽  
Author(s):  
Radia Belfodil ◽  
Hervé Barrière ◽  
Isabelle Rubera ◽  
Michel Tauc ◽  
Chantal Poujeol ◽  
...  

The role of CFTR in the control of K+ currents was studied in mouse kidney. Whole cell clamp was used to identify K+ currents on the basis of pharmacological sensitivities in primary cultures of proximal (PCT) and distal convoluted tubule (DCT) and cortical collecting tubule (CCT) from wild-type (WT) and CFTR knockout (KO) mice. In DCT and CCT cells, forskolin activated a 293B-sensitive K+ current in WT, but not in KO, mice. In these cells, a hypotonic shock induced K+ currents blocked by charybdotoxin in WT, but not in KO, mice. In PCT cells from WT and KO mice, the hypotonicity-induced K+ currents were insensitive to these toxins and were activated at extracellular pH 8.0 and inhibited at pH 6.0, suggesting that the corresponding channel was TASK2. In conclusion, CFTR is implicated in the control of KCNQ1 and Ca2+-sensitive swelling-activated K+ conductances in DCT and CCT, but not in proximal convoluted tubule, cells. In KO mice, impairment of the regulatory volume decrease process in DCT and CCT could be due to the loss of an autocrine mechanism, implicating ATP and adenosine, which controls swelling-activated Cl− and K+channels.


1993 ◽  
Vol 264 (5) ◽  
pp. C1201-C1209 ◽  
Author(s):  
S. Medrano ◽  
E. Gruenstein

Swelling of astrocytes commonly occurs after cerebral ischemia and other brain injuries. Because these cells constitute 20-25% of human brain volume, their swelling is a major factor in the morbidity and mortality associated with cerebral edema. Many cells, including astrocytes, resist or reverse the tendency to swell by activating transport pathways that lead to a regulatory volume decrease. Here we report the results of studies designed to elucidate the mechanisms of the regulatory volume decrease that occurs after astrocytes are swollen by exposure to hypotonic medium. Using UC-11MG cells, a well-characterized, human, astrocytoma-derived line, we observed an increase in membrane permeability to both K+ and Cl- during regulatory volume decrease, consistent with a net loss of these ions. Neither the increase in K+ exit nor the regulatory volume decrease was affected by bumetanide, an inhibitor of anion-cation cotransport. On the other hand, the increased K+ efflux, as well as the regulatory volume decrease, was blocked by Gd3+, suggesting a putative role of stretch-activated cationic channels in the process of volume regulation. Although increases in intracellular free Ca2+ were also observed during hypotonic treatment, they occurred well after the onset of the regulatory volume decrease. Furthermore, the regulatory volume decrease was not affected by blocking the intracellular free Ca2+ increase with dimethyl 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or by removal of extracellular Ca2+. These results indicate that the regulatory volume decrease in UC-11MG cells may involve stretch-activated channels that operate independently of changes in intracellular free Ca2+.


1992 ◽  
Vol 262 (5) ◽  
pp. C1167-C1174 ◽  
Author(s):  
B. S. Winkler ◽  
M. V. Riley ◽  
M. I. Peters ◽  
F. J. Williams

The role of chloride in fluid transport of the rabbit corneal endothelium was examined by measuring changes in corneal thickness following ion substitutions or addition of ion transport inhibitors in media superfusing the isolated tissue. Normal fluid transport is indicated by maintenance of constant thickness in a fresh cornea or thinning (deturgescence) of a preswollen deepithelialized cornea to its initial thickness at approximately 40 microns/h. These patterns are seen when tissues are superfused with HCO(3-)-Ringer containing 114 mM Cl-. When Cl- was substituted with gluconate, glucuronate, or SO4(2-) fresh and preswollen corneas immediately thinned at greater than 150 microns/h to a value less than 300 microns and then began to swell at 30 microns/h to above their original thickness. Substitution of Cl- with NO3- or Br- had a negligible immediate thinning effect, but fresh corneas subsequently swelled and preswollen corneas failed to deturgesce fully. The rapid thinning (called a "downtransient") observed with gluconate, glucuronate, and SO4(2-) also occurred in these media when ion and fluid transport were completely inhibited with ouabain or stilbenes or by absence of HCO3-, indicating that the thinning results from osmotic gradients induced by ionic reflection coefficients different from that of Cl-. When the downstransient was avoided in deepithelialized corneas by preswelling with the same Cl(-)-free media on both sides of the cornea, corneas maintained a constant but swollen thickness in gluconate and in NO3- or Br- deturgesced slowly and incompletely; ouabain or stilbenes caused further swelling in all media. We conclude that absence of Cl- partially impairs fluid transport, most probably via its role in a Cl(-)-HCO3- exchanger which has been proposed in a recent model of endothelial fluid transport.


Sign in / Sign up

Export Citation Format

Share Document