Mitogen-Activated Protein Kinase: Conservation of a Three-Kinase Module From Yeast to Human

1999 ◽  
Vol 79 (1) ◽  
pp. 143-180 ◽  
Author(s):  
CHRISTIAN WIDMANN ◽  
SPENCER GIBSON ◽  
MATTHEW B. JARPE ◽  
GARY L. JOHNSON

Widmann, Christian, Spencer Gibson, Matthew B. Jarpe, and Gary L. Johnson. Mitogen-Activated Protein Kinase: Conservation of a Three-Kinase Module From Yeast to Human. Physiol. Rev. 79: 143–180, 1999. — Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.

2005 ◽  
Vol 73 (5) ◽  
pp. 3178-3183 ◽  
Author(s):  
María P. Jiménez de Bagüés ◽  
Antoine Gross ◽  
Annie Terraza ◽  
Jacques Dornand

ABSTRACT By comparing smooth wild-type Brucella spp. to their rough mutants, we show that the LPS O chain restricted the activation of the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) pathways, thus preventing the synthesis of immune mediators that regulate host defense. We conclude that the MAPKs are a target for immune intervention by virulent smooth Brucella.


2013 ◽  
Vol 394 (9) ◽  
pp. 1115-1132 ◽  
Author(s):  
Ugo Moens ◽  
Sergiy Kostenko

Abstract Mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways that control pivotal cellular processes including proliferation, differentiation, survival, apoptosis, gene regulation, and motility. MAPK pathways consist of a relay of consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinases, and MAPKs. Conventional MAPKs are characterized by a conserved Thr-X-Tyr motif in the activation loop of the kinase domain, while atypical MAPKs lack this motif and do not seem to be organized into the classical three-tiered kinase cascade. One functional group of conventional and atypical MAPK substrates consists of protein kinases known as MAPK-activated protein kinases. Eleven mammalian MAPK-activated protein kinases have been identified, and they are divided into five subgroups: the ribosomal-S6-kinases RSK1-4, the MAPK-interacting kinases MNK1 and 2, the mitogen- and stress-activated kinases MSK1 and 2, the MAPK-activated protein kinases MK2 and 3, and the MAPK-activated protein kinase MK5 (also referred to as PRAK). MK5/PRAK is the only MAPK-activated protein kinase that is a substrate for both conventional and atypical MAPK, while all other MAPKAPKs are exclusively phosphorylated by conventional MAPKs. This review focuses on the structure, activation, substrates, functions, and possible implications of MK5/PRAK in malignant and nonmalignant diseases.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Yong Son ◽  
Yong-Kwan Cheong ◽  
Nam-Ho Kim ◽  
Hun-Taeg Chung ◽  
Dae Gill Kang ◽  
...  

Mitogen-activated protein kinases (MAPKs) are serine-threonine protein kinases that play the major role in signal transduction from the cell surface to the nucleus. MAPKs, which consist of growth factor-regulated extracellular signal-related kinases (ERKs), and the stress-activated MAPKs, c-jun NH2-terminal kinases (JNKs) and p38 MAPKs, are part of a three-kinase signaling module composed of the MAPK, an MAPK kinase (MAP2K) and an MAPK kinase (MAP3K). MAP3Ks phosphorylate MAP2Ks, which in turn activate MAPKs. MAPK phosphatases (MKPs), which recognize the TXY amino acid motif present in MAPKs, dephosphorylate and deactivate MAPKs. MAPK pathways are known to be influenced not only by receptor ligand interactions, but also by different stressors placed on the cell. One type of stress that induces potential activation of MAPK pathways is the oxidative stress caused by reactive oxygen species (ROS). Generally, increased ROS production in a cell leads to the activation of ERKs, JNKs, or p38 MAPKs, but the mechanisms by which ROS can activate these kinases are unclear. Oxidative modifications of MAPK signaling proteins and inactivation and/or degradation of MKPs may provide the plausible mechanisms for activation of MAPK pathways by ROS, which will be reviewed in this paper.


Sign in / Sign up

Export Citation Format

Share Document