scholarly journals The Li and Co-Substituted Spinel Mn Oxide,(Li)8a[Lix/4Co3x/4Mn2−x]16dO4, and Its Use as Cathode Material in Flat and Flexible Lithium Battery

2000 ◽  
Vol 22 (4) ◽  
pp. 257-263
Author(s):  
Y. S. Hong ◽  
C. H. Han ◽  
K. Kim ◽  
C. W. Kwon ◽  
G. Campet

The partial substitution of manganese by lithium and cobalt ions in 16d octahedral sites enhances the electrochemical cyclability of LiMn2O4upon cycling. The improvement in cycling performance is mainly attributed to the suppression of the Jahn–Teller distortion in the spinel structure. The as-doped spinel Mn oxide has been successfully used as cathode material in flat and flexible lithium battery.

2021 ◽  
Vol 490 ◽  
pp. 229519
Author(s):  
Renier Arabolla Rodríguez ◽  
Nelcy Della Santina Mohallem ◽  
Manuel Avila Santos ◽  
Demetrio A. Sena Costa ◽  
Luciano Andrey Montoro ◽  
...  

2018 ◽  
Vol 54 (39) ◽  
pp. 4959-4962 ◽  
Author(s):  
Zhenhua Zhou ◽  
Waqas Qamar Zaman ◽  
Wei Sun ◽  
Li-mei Cao ◽  
Muhammad Tariq ◽  
...  

Enhancing the OER performance by cultivating Jahn–Teller distortion in IrO2 with Mn oxide being the substrate material.


2021 ◽  
Author(s):  
Yanchen Liu ◽  
Chenchen Wang ◽  
Shuo Zhao ◽  
Lin Zhang ◽  
Kai Zhang ◽  
...  

Li-Substitution in P′2-Na0.67MnO2 mitigates the anisotropic change of Mn–O bonds and Na/vacancy ordering, and hence significantly promotes its cycling stability and rate capability as a cathode material for sodium-ion batteries.


2006 ◽  
Vol 301 ◽  
pp. 167-170
Author(s):  
Izumi Mukoyama ◽  
Takayuki Kodera ◽  
Nobuo Ogata ◽  
Takashi Ogihara

LiM(M=Fe,Al,Mg)XMn2-XO4 fine powders were synthesized by the ultrasonic spray pyrolysis using metal nitrate solution. LiMn2O4 powders obtained by this method have a spherical morphology with a submicron size. XRD revealed that as-prepared powders were crystallized to spinel structure with Fd3m space group. LiM(M=Fe,Al,Mg)XMn2-XO4 showed enhanced cycling performance at room temperature. Reduced Jahn-Teller distortion of LiMn2O4 by metal doping was responsible for enhanced cycle performance of LiMn2O4.


2020 ◽  
Author(s):  
Marta L. Vidal ◽  
Michael Epshtein ◽  
Valeriu Scutelnic ◽  
Zheyue Yang ◽  
Tian Xue ◽  
...  

We report a theoretical investigation and elucidation of the x-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization as well as the measurement of<br>the carbon K-edge spectra of both species using a table-top high-harmonic generation (HHG) source are described in the companion experimental paper [M. Epshtein et al., J. Phys.<br>Chem. A., submitted. Available on ChemRxiv]. We show that the 1sC -> pi transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence<br>of the unpaired (spectator) electron in the pi-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC ->pi* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation.<br>The prominent split structure of the 1sC -> pi* band of the cation is attributed to the interplay between the coupling of the core -> pi* excitation with the unpaired electron<br>in the pi-subshell and the Jahn-Teller distortion. The calculations attribute most of<br>the splitting (~1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and estimate the additional splitting due to structural relaxation to<br>be around ~0.1-0.2 eV. These results suggest that x-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller<br>effect in benzene cation.<br>


1995 ◽  
Vol 60 (9) ◽  
pp. 1429-1434
Author(s):  
Martin Breza

Using semiempirical CNDO-UHF method the adiabatic potential surface of 2[Cu(OH)6]4- complexes is investigated. The values of vibration and vibronic constants for Eg - (a1g + eg) vibronic interaction attain extremal values for the optimal O-H distance. The Jahn-Teller distortion decreases with increasing O-H distance. The discrepancy between experimentally observed elongated bipyramid of [Cu(OH)6]4- in Ba2[Cu(OH)6] and the compressed one obtained by quantum-chemical calculation is explainable by hydrogen bonding of the axial hydroxyl group.


1989 ◽  
Vol 03 (04) ◽  
pp. 355-359 ◽  
Author(s):  
S.L. YUAN ◽  
B.H. HOU ◽  
S.Z. JIN ◽  
W. WANG ◽  
G.G. ZHENG ◽  
...  

The preliminary study on the electron spin resonance (ESR) for the Bi-Sr-Ca-Cu-O system with different superconducting transition temperatures has been made at room temperature. It is found that the Lande factor g-values are increased with increasing zero resistance temperature T c0 but width between peaks ΔH pp of the ESR spectrum decreased with increasing T c0 . These might be attributed to the spin-orbit coupling of the magnetic ions and the Jahn-Teller distortion in the perpendicular component.


Sign in / Sign up

Export Citation Format

Share Document