scholarly journals A Cross-Layer Optimization Approach for Energy Efficient Wireless Sensor Networks: Coalition-Aided Data Aggregation, Cooperative Communication, and Energy Balancing

2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Qinghai Gao ◽  
Junshan Zhang ◽  
Xuemin (Sherman) Shen ◽  
Bryan Larish

We take a cross-layer optimization approach to study energy efficient data transport in coalition-based wireless sensor networks, where neighboring nodes are organized into groups to form coalitions and sensor nodes within one coalition carry out cooperative communications. In particular, we investigate two network models: (1) many-to-one sensor networks where data from one coalition are transmitted to the sink directly, and (2) multihop sensor networks where data are transported by intermediate nodes to reach the sink. For the many-to-one network model, we propose three schemes for data transmission from a coalition to the sink. In scheme 1, one node in the coalition is selected randomly to transmit the data; in scheme 2, the node with the best channel condition in the coalition transmits the data; and in scheme 3, all the nodes in the coalition transmit in a cooperative manner. Next, we investigate energy balancing with cooperative data transport in multihop sensor networks. Built on the above coalition-aided data transmission schemes, the optimal coalition planning is then carried out in multihop networks, in the sense that unequal coalition sizes are applied to minimize the difference of energy consumption among sensor nodes. Numerical analysis reveals that energy efficiency can be improved significantly by the coalition-aided transmission schemes, and that energy balancing across the sensor nodes can be achieved with the proposed coalition structures.

2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Rajeev Kumar ◽  
Dilip Kumar

Currently, wireless sensor networks (WSNs) are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC) algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO) is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO) and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP) hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i) selection of optimal number of subregions and further subregion parts, (ii) cluster head selection using ABC algorithm, and (iii) efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS). The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.


Author(s):  
G. Sai Krishna ◽  
Dr. D. J. Nagendra Kumar

In recent years, Wireless sensor networks (WSNs) have been emerged as an important research area due to its wide spread application in various domains such as military sensing and tracking, environment monitoring, patient monitoring, etc. WSN also have various advantages in gathering the data also with data transmission as well. Even though WSN has such advantages, there is certain drawback related to the energy consumption for data transmission over the network. Wireless sensor networks basically depend on the availability of nodes for transmission and if some dead nodes are available on the designated path of transmission, there will be delay in communication and also will affect the energy consumptions. Also when a particular node is transmitting any data packet with high power, it may lead to interference which will affect the proper transmission of data and wastage of power as well. For power level reduction proper methodology has to be followed starting with the clustering and designing of routing protocols. We intend to develop an enhanced clustering algorithm for initial clustering of sensor nodes for data transmission. Nodes will be clustered based on working attributes. Once nodes are clustered into different groups, transmission path will be assigned. An energy efficient optimal protocol will be designed in our approach for routing to improve the energy utilization by optimal power utilization. For optimization, we can employ multi objective optimization techniques which can enhance the optimal selection of power utilization. The proposed scheme will be then compared with some existing techniques to show the efficiency of the proposed approach.


Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime.


Author(s):  
G. Mohan Ram ◽  
T. Kesava ◽  
M.V. Subba Rao

In recent years, Wireless sensor networks (WSNs) have been emerged as an important research area due to its wide spread application in various domains such as military sensing and tracking, environment monitoring, patient monitoring, etc. WSN also have various advantages in gathering the data also with data transmission as well. Even though WSN has such advantages, there is certain drawback related to the energy consumption for data transmission over the network. Wireless sensor networks basically depend on the availability of nodes for transmission and if some dead nodes are available on the designated path of transmission, there will be delay in communication and also will affect the energy consumptions. Also, when a particular node is transmitting any data packet with high power, it may lead to interference which will affect the proper transmission of data and wastage of power as well. For power level reduction proper methodology has to be followed starting with the clustering and designing of routing protocols in WSNs. We intend to develop an enhanced clustering algorithm for initial clustering of sensor nodes for data transmission. Nodes will be clustered based on working attributes. Once nodes are clustered into different groups, transmission path will be assigned. An energy efficient optimal protocol will be designed in our approach for routing to improve the energy utilization by optimal power utilization. For optimization, we can employ multi objective optimization techniques which can enhance the optimal selection of power utilization. The proposed scheme will be then compared with some existing techniques to show the efficiency of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document