scholarly journals The Effect of Different Injection Strategies and Intake Conditions on the Emissions Characteristics in a Diesel Engine

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
M. Gorji-Bandpy ◽  
S. Soleimani ◽  
D. D. Ganji

Choosing various injection strategies and intake conditions are potentially effective techniques to reduce exhaust emission from diesel engines. The purpose of this study is to investigate the effect of different spray incoming angles, different spray cone angles, different injection timing, and different intake temperatures together with emission characteristics on a heavy duty diesel engine via three dimensional computational fluid dynamics (CFD) procedures. Furthermore the effect of multiple injector combustion chamber and its benefits in pollutant reduction is studied. The principal results show the significant differences in soot and generation during combustion between above different strategies.

2009 ◽  
Vol 13 (3) ◽  
pp. 9-21 ◽  
Author(s):  
Ali Ranjbar ◽  
Kurosh Sedighi ◽  
Mousa Farhadi ◽  
Mohsen Pourfallah

Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The choosing various injection strategies is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. The purpose of this study is to investigate the effect of different injection angles on a heavy duty diesel engine and emission characteristics. The varieties of injection angle were simulated and the emissions like soot and NO is calculated. The comparison between the different injection strategies was also investigated. A combustion chamber for three injection strategies (injection direction with angles of ?=67.5, 70, and 72.5 degree) was simulated. The comparative study involving rate of heat release, in-cylinder temperature, in-cylinder pressure, NO and soot emissions were also reported for different injection strategies. The case of ?=70 is optimum because in this manner the emissions are lower in almost most of crank angle than two other cases and the in-cylinder pressure, which is a representation of engine power, is higher than in the case of ?=67.5 and just a little lower than in the case of ?=72.5.


2014 ◽  
Vol 651-653 ◽  
pp. 866-874 ◽  
Author(s):  
Liang Chen ◽  
Hong Zeng ◽  
Xiao Bei Cheng

A 6-cylinder, turbocharged, common rail heavy-duty diesel engine was used in this study. The effect of pilot injection strategies on diesel fuel combustion process, heat release rate, emission and economy of diesel engine is studied. The pilot injection strategies include pilot injection timing and pilot injection mass to achieve the homogeneous compression ignition and lower temperature combustion of diesel engine. The two-color method was applied to take the flame images in the engine cylinder and obtain soot concentration distribution. The results demonstrate that with the advance of pilot injection timing, the peak in-cylinder pressure becomes lower, the ignition delay of the main combustion is shortened, the NOXand soot emissions are reduced, but the HC and CO emissions are increased. With the increase of pilot injection fuel mass, the heat release rate of the pilot injection combustion and the maximum rate of pressure rise increase, NOXand HC emissions are higher, and PM and CO emissions are reduced. The pilot combustion flame is non-luminous.


1990 ◽  
Author(s):  
Kazutoshi Mori ◽  
Hiroshi Kamikubo ◽  
Tohru Kawatani ◽  
Toshiji Obara ◽  
Izumi Fukano ◽  
...  

Author(s):  
Praveen Kandulapati ◽  
Chuen-Sen Lin ◽  
Dennis Witmer ◽  
Thomas Johnson ◽  
Jack Schmid ◽  
...  

Synthetic fuels produced from non-petroleum based feedstocks can effectively replace the depleting petroleum based conventional fuels while significantly reducing the emissions. The zero sulfur content and the near zero percentage of aromatics in the synthetic fuels make them promising clean fuels to meet the upcoming emissions regulations. However due to their significantly different properties when compared to the conventional fuels; the existing engines must be tested extensively to study their performance with the new fuels. This paper reports a detailed in-cylinder pressure measurement based study made on adaptability of the engine control module (ECM) of a modern heavy duty diesel engine to optimize the engine performance with the F-T diesel fuel. During this study, the F-T and Conventional diesel fuels were tested at different loads and various injection timing changes made with respect to the manufacturer setting. Results from these tests showed that the ECM used significantly different injection timings for the two fuels in the process of optimizing the engine performance. For the same power output the ECM used a 2° advance in the injection timing with respect to the manufacturer setting at the full load and 1° retard at the no load condition. While the injection timings used by the ECM were same for both the fuels at the 50% load condition. However, a necessity for further changes in the control strategies used by the ECM were observed to get the expected advantages with the F-T fuels.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2676-2681 ◽  
Author(s):  
HYUN-SEUNG LEE ◽  
YOUNG-SHIN LEE ◽  
JAE-HOON KIM ◽  
JOON-TAK JUN ◽  
JAE-OK LEE ◽  
...  

The heavy duty diesel engine must have a large output for maintaining excellent mobility. In this study, a three-dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis by using property of CGI. The compacted graphite iron (CGI) is a material currently under study for the engine demanded for high torque, durability, stiffness, and fatigue. The FE model of the heavy duty diesel engine section consisting of four half cylinders was selected. The heavy duty diesel engine section includes a cylinder block, a cylinder head, a gasket, a liner, a bearing cap, bearing and bolts. The loading conditions of engine are pre-fit load, assembly load, and gas load. A structural analysis on the result was performed in order to optimize on the cylinder block of the diesel engine.


Sign in / Sign up

Export Citation Format

Share Document