scholarly journals Advanced Data Assimilation and Predictability Studies on High-Impact Weather and Climate

2010 ◽  
Vol 2010 ◽  
pp. 1-2
Author(s):  
Zhaoxia Pu ◽  
Song-You Hong ◽  
Yaohui Li ◽  
Hann-Ming Henry Juang
2017 ◽  
Author(s):  
Qiuxia Wu

Abstract. Their economic and social importance emphasized by the survey of Department of Disaster Relief, Ministry of Civil Affairs of the People’s Republic of China, two different typical patterns of precipitation anomaly in the southern part of China during the 1982/1983 and 2009/2010 cold seasons coincided with the canonical El Niño and positive North Atlantic Oscillation (NAO) and with the El Niño Modoki and negative NAO, respectively. A better understanding of how a particular type of El Niño and a specific phase of NAO worked together to cause the relevant anomalous atmospheric circulation over the East Asia in the two high impact weather and climate cases was an interesting issue and could improve the prediction skill of natural hazards to a certain extent. In conclusion, superimposing on the remote and local Rossby wave responses in the atmosphere induced by the El Niño Modoki-related condensational heat sink over the South China Sea, the downstream extension of the negative NAO was well established by a NAO-induced stationary Rossby wave train along the Asian subtropical jet and played a major role in the persistent dry conditions in the Southwest China for the 2009/2010 boreal winter. On the contrary, for the 1982/1983 boreal winter, the canonical El Niño weakened the downstream extension of the positive NAO, and induced by the canonical El Niño-related condensational heat sink over the western equatorial Pacific Ocean, the remote and local Rossby wave responses in the atmosphere played a leading role in the sustained wet conditions in the South China.


2013 ◽  
Vol 129 (3-4) ◽  
pp. 381-395 ◽  
Author(s):  
James M. Done ◽  
Greg J. Holland ◽  
Cindy L. Bruyère ◽  
L. Ruby Leung ◽  
Asuka Suzuki-Parker

2013 ◽  
Vol 94 (12) ◽  
pp. ES179-ES182 ◽  
Author(s):  
Jianping Li ◽  
Richard Swinbank ◽  
Ruiqiang Ding ◽  
Wansuo Duan

2016 ◽  
Author(s):  
Branka Ivančan-Picek ◽  
Martina Tudor ◽  
Kristian Horvath ◽  
Antonio Stanešić ◽  
Ivatek Ivatek-Šahdan

Abstract. The HYdrological cycle in the Mediterranean EXperiment (HyMeX) is intended to improve the capabilities to predict high impact weather events. In its framework, the first Special Observation Period (SOP1), 5 September to 6 November 2012, was aimed to study heavy precipitation events and flash floods. Here we present high impact weather events over Croatia that occurred during SOP1. A particular attention is given to eight Intense Observation Periods (IOP)s during which high precipitation occurred over the eastern Adriatic and Dinaric Alps. During the entire SOP1, the operational models forecasts generally represented well medium intensity precipitation, while heavy precipitation was frequently underestimated by the ALADIN 8 km and overestimated at higher resolution (2 km). During IOP2 intensive rainfall event occurred in wider area of the city of Rijeka in the northern Adriatic. Short-range maximum rainfall totals have achieved maximum values ever recorded at Rijeka station since the beginning of measurements in 1958. The rainfall amount measured in intervals of 20, 30 and 40 minutes could be expected once in a more than thousand, few hundreds and hundred years respectively, and they belong to the extraordinarily rare events. The operational precipitation forecast using ALADIN model at 8 km grid spacing underestimated the rainfall intensity. Evaluation of numerical sensitivity experiments suggested that forecast was slightly enhanced by improving the initial conditions through variational data assimilation. The operational non-hydrostatic run at 2 km grid spacing using configuration with ALARO physics package further improved the forecast. This article highlights the need for an intensive observation period in the future over the Adriatic region, to validate the simulated mechanisms and improve numerical weather prediction via data assimilation and model improvements in description of microphysics and air-sea interaction.


2016 ◽  
Vol 16 (12) ◽  
pp. 2657-2682 ◽  
Author(s):  
Branka Ivančan-Picek ◽  
Martina Tudor ◽  
Kristian Horvath ◽  
Antonio Stanešić ◽  
Stjepan Ivatek-Šahdan

Abstract. The HYdrological cycle in the Mediterranean EXperiment (HyMeX) is intended to improve the capabilities of predicting high-impact weather events. Within its framework, the aim of the first special observation period (SOP1), 5 September to 6 November 2012, was to study heavy precipitation events and flash floods. Here, we present high-impact weather events over Croatia that occurred during SOP1. Particular attention is given to eight intense observation periods (IOPs), during which high precipitation occurred over the eastern Adriatic and Dinaric Alps. During the entire SOP1, the operational model forecasts generally well represented medium intensity precipitation, but heavy precipitation was frequently underestimated by the ALADIN model at an 8 km grid spacing and was overestimated at a higher resolution (2 km grid spacing). During IOP2, intensive rainfall occurred over a wider area around the city of Rijeka in the northern Adriatic. The short-range maximum rainfall totals were the largest ever recorded at the Rijeka station since the beginning of measurements in 1958. The rainfall amounts measured in intervals of 20, 30 and 40 min were exceptional, with return periods that exceeded a thousand, a few hundred and one hundred years, respectively. The operational precipitation forecast using the ALADIN model at an 8 km grid spacing provided guidance regarding the event but underestimated the rainfall intensity. An evaluation of numerical sensitivity experiments suggested that the forecast was slightly enhanced by improving the initial conditions through variational data assimilation. The operational non-hydrostatic run at a 2 km grid spacing using a configuration with the ALARO physics package further improved the forecast. This article highlights the need for an intensive observation period in the future over the Adriatic region to validate the simulated mechanisms and improve numerical weather predictions via data assimilation and model improvements in descriptions of microphysics and air–sea interactions.


Author(s):  
Sharanya J. Majumdar ◽  
Juanzhen Sun ◽  
Brian Golding ◽  
Paul Joe ◽  
Jimy Dudhia ◽  
...  

Capsule SummaryThe WMO HIWeather Multiscale Hazard Forecasting project members and collaborators review the current status and future challenges in Observations, Nowcasting, Data Assimilation, Ensemble Forecasting, and Coupled Hazard Modeling.


Sign in / Sign up

Export Citation Format

Share Document