scholarly journals Maximal Regularity for Flexible Structural Systems in Lebesgue Spaces

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Claudio Fernández ◽  
Carlos Lizama ◽  
Verónica Poblete

We study abstract equations of the formλu′′′(t)+u′′(t)=c2Au(t)+c2μAu′(t)+f(t),0<λ<μwhich is motivated by the study of vibrations of flexible structures possessing internal material damping. We introduce the notion of(α;β;γ)-regularized families, which is a particular case of(a;k)-regularized families, and characterize maximal regularity inLp-spaces based on the technique of Fourier multipliers. Finally, an application with the Dirichlet-Laplacian in a bounded smooth domain is given.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Carlos Lizama ◽  
Marina Murillo-Arcila

Abstract We consider the maximal regularity problem for a PDE of linear acoustics, named the Van Wijngaarden–Eringen equation, that models the propagation of linear acoustic waves in isothermal bubbly liquids, wherein the bubbles are of uniform radius. If the dimensionless bubble radius is greater than one, we prove that the inhomogeneous version of the Van Wijngaarden–Eringen equation, in a cylindrical domain, admits maximal regularity in Lebesgue spaces. Our methods are based on the theory of operator-valued Fourier multipliers.


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Zhijun Zhang

This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝ n , g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$ , b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.


2002 ◽  
Vol 04 (03) ◽  
pp. 409-434 ◽  
Author(s):  
ADIMURTHI

In this article, we have determined the remainder term for Hardy–Sobolev inequality in H1(Ω) for Ω a bounded smooth domain and studied the existence, non existence and blow up of first eigen value and eigen function for the corresponding Hardy–Sobolev operator with Neumann boundary condition.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Mónica Clapp ◽  
Filomena Pacella

AbstractWe establish the existence of nodal solutions to the supercritical problemin a symmetric bounded smooth domain Ω of


Author(s):  
Zongming Guo

The structure of positive boundary blow-up solutions to semilinear problems of the form −Δu = λf(u) in Ω, u = ∞ on ∂Ω, Ω ⊂ RN a bounded smooth domain, is studied for a class of nonlinearities f ∈ C1 ([0, ∞)\{z2}) satisfying f (0) = f(z1) = f (z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1)∪(z2, ∞), f > 0 in (z1, z2). Two positive boundary-layer solutions and infinitely many positive spike-layer solutions are obtained for λ sufficiently large.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yujuan Jiao ◽  
Yanli Wang

We are concerned with the following modified nonlinear Schrödinger system:-Δu+u-(1/2)uΔ(u2)=(2α/(α+β))|u|α-2|v|βu,  x∈Ω,  -Δv+v-(1/2)vΔ(v2)=(2β/(α+β))|u|α|v|β-2v,  x∈Ω,  u=0,  v=0,  x∈∂Ω, whereα>2,  β>2,  α+β<2·2*,  2*=2N/(N-2)is the critical Sobolev exponent, andΩ⊂ℝN  (N≥3)is a bounded smooth domain. By using the perturbation method, we establish the existence of both positive and negative solutions for this system.


2016 ◽  
Vol 18 (02) ◽  
pp. 1550021 ◽  
Author(s):  
Marcelo F. Furtado ◽  
Bruno N. Souza

We consider the problem [Formula: see text] where [Formula: see text] is a bounded smooth domain, [Formula: see text], [Formula: see text], [Formula: see text]. Under some suitable conditions on the continuous potential [Formula: see text] and on the parameter [Formula: see text], we obtain one nodal solution for [Formula: see text] and one positive solution for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document