scholarly journals Analysis of Reverse-Bias Leakage Current Mechanisms in Metal/GaN Schottky Diodes

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
P. Pipinys ◽  
V. Lapeika

Temperature-dependent reverse-bias current-voltage characteristics obtained by other researchers for Schottky diodes fabricated on GaN are reinterpreted in terms of phonon-assisted tunneling (PhAT) model. Temperature dependence of reverse-bias leakage current is shown could be caused by the temperature dependence of electron tunneling rate from traps in the metal-semiconductor interface to the conduction band of semiconductor. A good fit of experimental data with the theory is received in a wide temperature range (from 80 K to 500 K) using for calculation the effective mass of 0.222 . and for the phonon energy the value of 70 meV. The temperature and bias voltages dependences of an apparent barrier height (activation energy) are also explicable in the framework of the PhAT model.

2006 ◽  
Vol 527-529 ◽  
pp. 1167-1170 ◽  
Author(s):  
Vito Raineri ◽  
Fabrizio Roccaforte ◽  
Sebania Libertino ◽  
Alfonso Ruggiero ◽  
V. Massimino ◽  
...  

The defects formation in ion-irradiated 4H-SiC was investigated and correlated with the electrical properties of Schottky diodes. The diodes were irradiated with 1 MeV Si+-ions, at fluences ranging between 1×109cm-2 and 1.8×1013cm-2. After irradiation, the current-voltage characteristics of the diodes showed an increase of the leakage current with increasing ion fluence. The reverse I-V characteristics of the irradiated diodes monitored as a function of the temperature showed an Arrhenius dependence of the leakage, with an activation energy of 0.64 eV. Deep level transient spectroscopy (DLTS) allowed to demonstrate that the Z1/Z2 center of 4H-SiC is the dominant defect in the increase of the leakage current in the irradiated material.


1993 ◽  
Vol 325 ◽  
Author(s):  
Z.C. Huang ◽  
C.R. Wie

AbstractDeep levels have been measured in molecular beam epitaxy grown Ga0.51In0.49P/GaAs heterostructure by double correlation deep level transient spectroscopy. Gold(Au) and Aluminum (Al) metals were used for Schottky contact. A contact-related hole trap with an activation energy of 0.50-0.75eV was observed at the A1/GaInP interface, but not at the Au/GaInP interface. To our knowledge, this contact-related trap has not been reported before. We attribute this trap to the oxygen contamination, or a vacancy-related defect, VIn or VGa. A new electron trap at 0.28eV was also observed in both Au- and Al-Schottky diodes. Its depth profile showed that it is a bulk trap in GaInP epilayer. The temperature dependent current-voltage characteristics (I-V-T) show a large interface recombination current at the GaInP surface due to the Al-contact. Concentration of the interface trap and the magnitude of recombination current are both reduced by a rapid thermal annealing at/or above 450°C after the aluminum deposition.


2008 ◽  
Vol 600-603 ◽  
pp. 967-970 ◽  
Author(s):  
Mitsutaka Nakamura ◽  
Yoshikazu Hashino ◽  
Tomoaki Furusho ◽  
Hiroyuki Kinoshita ◽  
Hiromu Shiomi ◽  
...  

The effects of basal-plane defects on the performance of 4H-SiC Schottky diodes using a Ni electrode are demonstrated. Systematic characterization was performed using 4H-SiC epitaxial layers grown by sublimation epitaxy on substrates with various off-axis angles. As the off-axis angle increases, the ideality factor of the current-voltage characteristics increases, and the Schottky barrier height decreases, corresponding to an increase in the number of basal-plane defects. The reverse-bias current degrades for high off-axis samples. These results indicate that basal-plane defects degrade the device performance. Schottky diodes that possesses good characteristics were obtained for samples with low off-axis angles (2o- and 4o-off samples).


2010 ◽  
Vol 97 (24) ◽  
pp. 242103 ◽  
Author(s):  
Wantae Lim ◽  
Jae-Hyun Jeong ◽  
Jae-Hoon Lee ◽  
Seung-Bae Hur ◽  
Jong-Kyu Ryu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document