scholarly journals Block-by-Block Method for Solving Nonlinear Volterra-Fredholm Integral Equation

2010 ◽  
Vol 2010 ◽  
pp. 1-8
Author(s):  
Abdallah A. Badr

We consider a nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind. The Volterra kernel is time dependent, and the Fredholm kernel is position dependent. Existence and uniqueness of the solution to this equation, under certain conditions, are discussed. The block-by-block method is introduced to solve such equations numerically. Some numerical examples are given to illustrate our results.

2016 ◽  
Vol 11 (10) ◽  
pp. 5705-5714
Author(s):  
Abeer Majed AL-Bugami

In this paper, the existence and uniqueness of solution of the linear two dimensional Volterra integral equation of the second kind with Continuous Kernel are discussed and proved.RungeKutta method(R. KM)and Block by block method (B by BM) are used to solve this type of two dimensional Volterra integral equation of the second kind. Numerical examples are considered to illustrate the effectiveness of the proposed methods and the error is estimated.


2015 ◽  
Vol 11 (5) ◽  
pp. 5220-5229
Author(s):  
Abeer Majed AL-Bugami

In this paper, the existence and uniqueness of solution of the linear two dimensional Volterra integral equation of the second kind with Continuous Kernel are discussed and proved.RungeKutta method(R. KM)and Block by block method (B by BM) are used to solve this type of two dimensional Volterra integral equation of the second kind. Numerical examples are considered to illustrate the effectiveness of the proposed methods and the error is estimated.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


Author(s):  
M. Tahami ◽  
A. Askari Hemmat ◽  
S. A. Yousefi

In one-dimensional problems, the Legendre wavelets are good candidates for approximation. In this paper, we present a numerical method for solving two-dimensional first kind Fredholm integral equation. The method is based upon two-dimensional linear Legendre wavelet basis approximation. By applying tensor product of one-dimensional linear Legendre wavelet we construct a two-dimensional wavelet. Finally, we give some numerical examples.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1554 ◽  
Author(s):  
Veronica Ilea ◽  
Diana Otrocol

Following the idea of T. Wongyat and W. Sintunavarat, we obtain some existence and uniqueness results for the solution of an integral equation with supremum. The paper ends with the study of Gronwall-type theorems, comparison theorems and a result regarding a Ulam–Hyers stability result for the corresponding fixed point problem.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Saker Hacene

In the present work, we deal with the harmonic problems in a bounded domain of ℝ2 with the nonlinear boundary integral conditions. After applying the Boundary integral method, a nonlinear boundary integral equation is obtained; the existence and uniqueness of the solution will be a consequence of applying theory of monotone operators.


2019 ◽  
Vol 20 (3) ◽  
pp. 403
Author(s):  
Suzete M Afonso ◽  
Juarez S Azevedo ◽  
Mariana P. G. Da Silva ◽  
Adson M Rocha

In this work we consider the general functional-integral equation: \begin{equation*}y(t) = f\left(t, \int_{a}^{b} k(t,s)g(s,y(s))ds\right), \qquad t\in [a,b],\end{equation*}and give conditions that guarantee existence and uniqueness of solution in $L^p([a,b])$, with {$1<p<\infty$}.We use  Banach Fixed Point Theorem and employ the successive approximation method and Chebyshev quadrature for approximating the values of integrals. Finally, to illustrate the results of this work, we provide some numerical examples.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Meilan Sun ◽  
Chuanqing Gu

The function-valued Padé-type approximation (2DFPTA) is used to solve two-dimensional Fredholm integral equation of the second kind. In order to compute 2DFPTA, a triangle recursive algorithm based on Sylvester identity is proposed. The advantage of this algorithm is that, in the process of calculating 2DFPTA to avoid the calculation of the determinant, it can start from the initial value, from low to high order, and gradually proceeds. Compared with the original two methods, the numerical examples show that the algorithm is effective.


2018 ◽  
Vol 85 (1-2) ◽  
pp. 53 ◽  
Author(s):  
Ahmed A. Hamoud ◽  
Kirtiwant P. Ghadle

In this paper, a modied Adomian decomposition method has been applied to approximate the solution of the fuzzy Volterra-Fredholm integral equations of the first and second Kind. That, a fuzzy Volterra-Fredholm integral equation has been converted to a system of Volterra-Fredholm integral equations in crisp case. We use MADM to find the approximate solution of this system and hence obtain an approximation for the fuzzy solution of the Fuzzy Volterra-Fredholm integral equation. A nonlinear evolution model is investigated. Moreover, we will prove the existence, uniqueness of the solution and convergence of the proposed method. Also, some numerical examples are included to demonstrate the validity and applicability of the proposed technique.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Jukka Kemppainen

Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition on a bounded domain with Lyapunov boundary is proved in the space of continuous functions up to boundary. Since a Green matrix of the problem is known, we may seek the solution as the linear combination of the single-layer potential, the volume potential, and the Poisson integral. Then the original problem may be reduced to a Volterra integral equation of the second kind associated with a compact operator. Classical analysis may be employed to show that the corresponding integral equation has a unique solution if the boundary data is continuous, the initial data is continuously differentiable, and the source term is Hölder continuous in the spatial variable. This in turn proves that the original problem has a unique solution.


Sign in / Sign up

Export Citation Format

Share Document